
5
Details of the Consultation
System

Edward H. Shortliffe

In this chapter MYCIN’s implementation is presented in considerable de-
tail. Our goals are to explain the data and control structures used by the
program and to describe some of the complex and often unexpected prob-
lems that arose during system implementation. In Chapter 1 the motiva-
tions behind many of MYCIN’s capabilities were mentioned. The reader
is encouraged to bear those design criteria in mind throughout this chap-
ter.

This chapter specifically describes the Consultation System. This sub-
program uses both system knowledge from the corpus of rules and patient
data entered by the physician to generate advice for the user. Furthermore,
the program maintains a dynamic data base, which provides an ongoing
record of the current consultation. As a result, this chapter must discuss
both the nature of the various data structures and how they are used or
maintained by the Consultation System.

Section 5.1 describes the corpus of rules and the associated data struc-
tures. It provides a formal description of the rules used by MYCIN. Our
quantitative truth model is briefly introduced, and the mechanism for rule
evaluation is explained. This section also describes the clinical parameters
with which MYCIN is familiar and which fbrm the basis for the conditional
expressions in the premise of a rule.

In Section 5.2 MYCIN’s goal-oriented control structure is described.
Mechanisms for rule invocation and question selection are explained at
that time. The section also discusses the creation of the dynamic data base,

This chapter is condensed from Chapter 3 of Computer-Based Medical Consultation.~: MYCIN,
New York: Elsevier/North-Holland, 1976. Copyright © 1976 by Elsevier/North-Holland. All
rights reserved. Used with permission.

78



System Knowledge 79

which is the foundation for both the system’s advice and its explanation
capabilities (to be described in Part Six).

Section 5.3 is devoted to an explanation of the program’s context tree,
i.e., the network of interrelated organisms, drugs, and cultures that char-
acterize the patient and his or her current clinical condition. The need for
such a data structure is clarified, and the method for propagation (growth)
of the tree is described.

The final tasks in MYCIN’s clinical problem area are the identification
of" potentially useful drugs and the selection of the best drug or drugs
from that list. MYCIN’s early mechanism for making these decisions is
discussed in Section 5.4 of this chapter. Later refinements are the subject
of Chapter 6.

Section 5.5 discusses MYCIN’s mechanisms for storing patient data
and for permitting a user to change the answer to a question. As will be
described, these two capabilities are closely interrelated.

In Section 5.6 we briefly mention extensions to the system that were
contemplated when this material was written in 1975. Several of these
capabilities were eventually implemented.

5.1 System Knowledge

5.1.1 Decision Rules

Automated problem-solving systems use criteria for drawing conclusions
that often support a direct analogy to the rule-based knowledge represen-
tation used by MYCIN. Consider, for example, the conditional probabilities
that underlie Bayesian diagnosis programs. Each probability provides in-
tormation that may be stated in an explicit rule format:

P(hle) = means
IF: e is known to be true
THEN: conclude that h is true with probability X

It is important to note, therefore, that the concept of rule-based knowledge
is not unique, even for medical decision-making programs.

Representation of the Rules

The 200 rules in the original MYCIN system consisted of a premise, an
action, and sometimes an e/se clause. Else clauses were later deleted from
the system because they were seldom used, and a general representation



80 Details of the Consultation System

of inference statements could be achieved without them. Every rule has a
name of" the form RULE### where ### represents a three-digit number.

The details of rules and how they are used are discussed throughout
the remainder of" this chapter. We therefore offer a formal definition of
rules, which will serve in part as a guide for what is to follow. The rules
are stored as LISP data structures in accordance with the following Backus-
Nauer Form (BNF) description:

<rule> ::=

<premise> ::=

<condition> :: =

<action> ::=

<else> :: =

<concpart> ::=

<premise> <action> <premise> <action>
<else>

(SAND <condition> .. <condition>)

(<funcl > <context> <parameter>) 
(<func2> <context> <parameter> <value>) 
(<special-func> <arguments>) 
($OR <condition> ... <condition>)

<concpart>

<concpart>

<conclusion> I <actfunc> I
(DO-ALL <conclusion> ... <conclusion>) 
(DO-ALL <actfunc> ... <actfunc>)

<context> ::= see Section 5.1.2

<parameter> :: = see Section 5.1.3

<value> ::= see Section 5.1.4

<funcl> ::= see Section 5.1.5

<func2> ::= see Section 5.1.5

<special-func> ::-- see Section 5.1.6

<arguments> ::= see Section 5.1.6

<conclusion> :: = see Section 5.2.3

<actfunc> ::= see Section 5.4

Thus the premise of a rule consists of a conjunction of conditions, each of
which must hold for the indicated action to be taken. Negations of con-
ditions are handled by individual predicates (< func 1 > and < func2 >) and
therefore do not require a $NOT function to complement the Boolean
functions SAND and $OR. If the premise of a rule is known to be false,
the conclusion or action indicated by the else clause is taken. If the truth



System Knowledge 81

of the premise cannot be ascertained or the premise is false but no else
condition exists, the rule is simply ignored.

The premise of a rule is always a conjunction of one or more condi-
tions. Disjunctions of conditions may be represented as multiple rules with
identical action clauses. A condition, however, may itself be a disjunction
of conditions. These conventions are somewhat arbitrary but do provide
sufficient flexibility so that any Boolean expression may be represented by
one or more rules. As is discussed in Section 5.2, multiple rules are effec-
tively ORed together by MYCIN’s control structure.

For example, two-leveled Boolean nestings of conditions are acceptable
as follows:

Legal:

[1] A&B&C~D

[2] A & (B or C) - 

[3] (A or B or C) & (D or E) 

Illegal:

[4] AorBorC~D

[5] A&(Bor(C&D))-E

Rule [4] is correctly represented by the following three rules:

[6] A -o D

[7] B --, D

[8] C ~ D

whereas [5] must be written as:

[9] A&C&D--.E

[10] A&B~E

Unlike rules that involve strict implication, MYCIN’s rules allow the
strength of an inference to be modified by a certainty factor (CF). A CF 
a number from -1 to + 1, the nature of which is described in Section

¯ 5.1.4 and in Chapter 11.
The following three examples are rules from MYCIN that have been

translated into English from their internal LISP representation (Section
5.1.7). They represent the range of rule types available to the system. The
details of their internal representation will be explained as we proceed.



82 Details of the Consultation System

RULE037

IF: 1) The identity of the organism is not known with
certainty, and

2) The stain of the organism is gramneg, and
3) The morphology of the organism is rod, and
4) The aerobicity of the organism is aerobic

THEN:There is strongly suggestive evidence (.8) that the
class of the organism is enterobacteriaceae

RULE145

IF: 1) The therapy under consideration is one
of: cephalothin clindamycin erythromycin
lincomycin vancomycin, and

2) Meningitis is an infectious disease diagnosis
for the patient

THEN:It is definite (1) the therapy under consideration
is not a potential therapy for use against the
organism

RULE060

iF: The identity of the organism is bacteroides
THEN: I recommend therapy chosen from among the following drugs:

1 - clindamycin (.99)
2 - chloramphenicol(.99)
3 - erythromycin (.57)
4 - tetracycline (.28)
5 - carbenicillin (.27)

Before we can explain how rules such as these are invoked and eval-
uated, it is necessary to describe further MYCIN’s internal organization.
We shall therefore temporarily digress in order to lay some groundwork
for the description of the evaluation [’unctions in Section 5.1.5.

5.1.2 Categorization of Rules by Context

The Context Tree

Although it is common to describe diagnosis as inference based on attri-
butes of the patient, MYCIN’s decisions must necessarily involve not only
the patient but also the cultures that have been grown, organisms that have
been isolated, and drugs that have been administered. Each of these is

termed a context of the program’s reasoning (see <:context> in the BNF
description of rules). 

MYCIN currently (1975) knows about ten different context-types:

JThe use of the word context should not be confused with its meaning in high-level languages
that permit temporary saving of all information regarding a program’s current status--a
common mechanism for backtracking and parallel-processing implementations.



System Knowledge 83

CURCULS
CURDRUGS

CURORGS
OPDRGS

OPERS
PERSON
POSSTHER
PRIORCULS
PRIORDRGS

PRIORORGS

A current culture from which organisms were isolated
An antimicrobial agent currently being administered to
a patient
An organism isolated from a current culture
An antimicrobial agent administered to the patient
during a recent operative procedure
An operative procedure the patient has undergone
The patient
A therapy being considered for recommendation
A culture obtained in the past
An antimicrobial agent administered to the patient in
the past
An organism isolated from a prior culture

Except for PERSON, each of these context-types may be instantiated more
than once during any given run of the consultation program. Some may
not be created at all if they do not apply to the given patient. However,
each time a context-type is instantiated, it is given a unique name. For
example, CULTURE-1 is the first CURCUL and ORGANISM-1 is the first
CURORG. Subsequent CURCULS or PRIORCULS are called CULTURE-
2, CULTURE-3, etc.

The context-types instantiated during a run of the consultation pro-
gram are arranged hierarchically in a data structure termed the context tree.
One such tree is shown in Figure 5-1. The context-type for each instan-
tiated context is shown in parentheses near its name. Thus, to clarify ter-
minology, we note that a node in the context tree is called a context and is
created as an instantiation of a context-type. This sample context tree cor-
responds to a patient from whom two current cultures and one prior cul-
ture were obtained. One organism was isolated from each of the current
cultures, but the patient is being treated (with two drugs) for only one 
the current organisms. Furthermore, two organisms were grown from the
prior culture, but therapy was instituted to combat only one of these. Fi-
nally, the patient has had a recent operative procedure during which he
or she was treated with an antimicrobial agent.

The context tree is useful not only because it gives structure to the
clinical problem (Figure 5-1 already tells us a good deal about PATIENT-
1), but also because we often need to be able to relate one context to
another. For example, in considering the significance of ORGANISM-2,
MYCIN may well want to be able to reference the site of the culture from
which ORGANISM-2 was obtained. Since the patient has had three dif-
ferent cultures, we need an explicit mechanism for recognizing that OR-
GANISM-2 came from CULTURE-2, not from CULTURE-1 or CUL-
TURE-3. The technique for dynamic propagation (i.e., growth) of the
context tree during a consultation is described in Section 5.3.



84

--0



System Knowledge 85

Interrelationship of Rules and the Tree

The 200 rules currently used by MYCIN2 are not explicitly linked in a
decision tree or reasoning network. This feature is in keeping with our
desire to keep system knowledge modular and manipulable. However, rules
are subject to categorization in accordance with the context-types for which
they are most appropriately invoked. For example, some rules deal with
organisms, some with cultures, and still others deal solely with the patient.
MYCIN’s current rule categories are as follows (context-types to which they
may be applied are enclosed in parentheses):

CULRULES

CURCULRULES

CURORGRULES

DRGRULES

OPRULES

ORDERRULES

ORGRULES

PATRULES
PDRGRULES

PRCULRULES

PRORGRULES

THERULES

Rules that may be applied to any culture
(CURCULS or PRIORCULS)
Rules that may be applied only to current cultures
(CURCULS)
Rules that may be applied only to current
organisms (CURORGS)
Rules that may be applied to any antimicrobial
agent that has been administered to combat a
specific organism (CURDRUGS or PRIORDRGS)
Rules that may be applied to operative procedures
(OPERS)
Rules that are used to order the list of possible
therapeutic recommendations (POSSTHER)
Rules that may be applied to any organism
(CURORGS or PRIORORGS)
Rules that may be applied to the patient (PERSON)
Rules that may be applied only to drugs given to
combat prior organisms (PRIORDRGS)
Rules that may be applied only to prior cultures
(PRIORCULS)
Rules that may be applied only to organism
isolated from prior cultures (PRIORORGS)
Rules that store information regarding drugs of
choice (Section 5.4.1)

Every rule in the MYCIN system belongs to one, and only one, of these
categories. Furthermore, selecting the proper category for a newly ac-
quired rule does not present a problem. In fact, category selection can be
automated to a large extent.

Consider a rule such as this:

2Ed, note: This number increased to almost 500 by 1978.



86 Details of the Consultation System

RULE124

IF: 1) The site of the culture is throat, and
2) The identity of the organism is streptococcus

THEN:There is strongly suggestive evidence (.8) that
the subtype of the organism Js not group-D

This is one of MYCIN’s ORGRULES and may thus be applied to either a
CURORGS context or a PRIORORGS context. Referring back to Figure
5-1, suppose RULE 124 were applied to ORGANISM-2. The first condition
in the premise refers to the site of the culture from which ORGANISM-2
was isolated (i.e., CULTURE-2) and not to the organism itself (i.e., orga-
nisms do not have sites, but cultures do). The context tree is therefore
important for determining the proper context when a rule refers to an
attribute of a node in the tree other than the context to which the rule is
being explicitly applied. Note that this means that a single rule may refer
to nodes at several levels in the context tree. The rule is categorized simply
on the basis of the lowest context-type (in the tree) that it may reference.
Thus RULE124 is an ORGRULE rather than a CULRULE.

5.1.3 Clinical Parameters

This subsection describes the data types indicated by <parameter> and
<value> in the BNF description of rules. Although we have previously
asserted that all MYCIN’s knowledge is stored in its corpus of rules, the
clinical parameters and their associated properties comprise an important
class of second-level knowledge. We shall first explain the kind of" param-
eters used by the system and then describe their representation.

A clinical parameter is a characteristic of one of the contexts in the
context tree, i.e., the name of the patient, the site of a culture, the mor-
phology of an organism, the dose of a drug, etc. A patient’s status would
be completely specified by a context tree in which values were known for
all the clinical parameters characterizing each node in the tree (assuming
the parameters known to MYCIN encompass all those that are clinically
relevant--a dubious assumption at present). In general, this is more in-
formation than is needed, however, ~ one of MYCIN’s tasks is to identify
those clinical parameters that need to be considered for the patient about
whom advice is being sought.

The concept of an attribute-object-value triple is common within the
AI field. This associative relationship is a basic data type for the SAIL
language (Feldman et al., 1972) and is the foundation for the property-list
formalism in LISP (McCarthy et al., 1962). Relational predicates in pred-
icate calculus also represent associative triples. The point is that many facts
may be expressed as triples that state that some object has an attribute with
some specified value. Stated in the order <attribute object value>, ex-
amples include:

(COLOR BALL RED)
(OWNS FIREMAN RED-SUSPENDERS)



System Knowledge 87

(AGE BOB 22)
(FATHER CHILD ’DADDY’)

(GRAMSTAIN ORGANISM GRAM-POSITIVE)
(DOSE DRUG 1.5-GRAMS)

(MAN BOB TRUE)
(WOMAN BOB FALSE)

Note that the last two examples are different from the others ~n that they
represent a rather different kind of relationship. In fact, several authors
would classify the first six as "relations" and the last two as "predicates,"
using the simpler notation:

MAN (BOB)
-WOMAN (BOB)

Regardless of" whether it is written as MAN(BOB) or (MAN BOB TRUE),
this binary predicate statement has rather different characteristics from
the relations that form natural triples. This distinction will become clearer
later (see yes-no parameters below).

MYCIN stores inferences and data using the attribute-object-value
concept. The object is always some context in the context tree, and the
attribute is a clinical parameter appropriate for that context. Information
stored using this mechanism may be retrieved and updated in accordance
with a variety of conventions described throughout this chapter.

The Three Kinds of Clinical Parameters

There are three fundamentally different kinds of clinical parameters. The
simplest variety is single-valued parameters. These are attributes such as the
name of the patient and the identity of the organism. In general, they have
a large number of possible values that are mutually exclusive. As a result,
only one can be the true value, although several may seem likely at any
point during the consultation.

Multi-valued parameters also generally have a large number of possible
values. The difference is that the possible values need not be mutually
exclusive. Thus such attributes as a patient’s drug allergies and a locus of
an infection may have multiple values, each of which is known to be correct.

The third kind of clinical parameter corresponds to the binary pred-
icate discussed above. These are attributes that are either true or false for
the given context. For example, the significance of an organism is either
true or false (yes or no), as is the parameter indicating whether the dose
of a drug is adequate. Attributes of this variety are called yes-no parameters.
They are, in effect, a special kind of single-valued parameter for which
there are only two possible values.

Classification and Representation of the Parameters

The clinical parameters known to MYCIN are categorized in accordance
with the context to which they apply. These categories include:



88 Details of the Consultation System

PROP-CUL

PROP-DRG

PROP-OP

PROP-ORG

PROP-PT

PROP-THER

Those clinical parameters which are attributes of
cultures (e.g., site of the culture, method of collection)
Those clinical parameters which are attributes of
administered drugs (e.g., name of the drug, duration
of administration)
Those clinical parameters which are attributes of
operative procedures (e.g., the cavity, if any, opened
during the procedure)
Those clinical parameters which are attributes of
organisms (e.g., identity, gram stain, morphology)
Those clinical parameters which are attributes of the
patient (e.g., name, sex, age, allergies, diagnoses)
Those clinical parameters which are attributes of
therapies being considered for recommendation (e.g.,
recommended dosage, prescribing name)

These categories encompass all clinical parameters used by the system.
Note that any of the nodes (contexts) in the context tree for the patient
may be fully characterized by the values of the set of clinical parameters
in one of these categories.

Each of the 65 clinical parameters currently (1975) known to MYCIN
has an associated set of properties that is used during consideration of the
parameter for a given context. Figure 5-2 presents examples of the three
types of clinical parameters, which together demonstrate several of these
properties:

EXPECT

PROMPT

PROMPT 1

This property indicates the range of expected
values that the parameter may have.
IF equal to (YN), then the parameter is a yes-no
parameter.
IF equal to (NUMB), then the expected value 
the parameter is a number.
IF equal to (ONE-OF <list>), then the value 
the parameter must be a member of <list>.
IF equal to (ANY), then there is no restriction 
the range of values that the parameter may have.
This property is a sentence used by MYCIN when
it requests the value of the clinical parameter from
the user; if there is an asterisk in the phrase (see
Figure 5-2), it is replaced by the name of the
context about which the question is being asked;
this property is used only for yes-no or single-
valued parameters.
This property is similar to PROMPT but is used if
the clinical parameter is a multi-valued parameter;
in these cases MYCIN only asks the question about



System Knowledge 89

Yes-No Parameter

FEBRILE: <FEBRILE is an attribute of a patient and is therefore a member of
the list PROP-PT>

EXPECT: (YN)
LOOKAHEAD: (RULE149 RULE109 RULE045)
PROMPT: (Is * febrile?)
TRANS: (* IS FEBRILE)

Single-Valued Parameter

IDENT: <IDENT is an attribute of an organism and is therefore a member of
the list PROP-ORG>

CONTAINED-IN: (RULE030)
EXPECT: (ONEOF (ORGANISMS))
LABDATA: T
LOOKAHEAD: (RULE004 RULE054 ... RULE168)
PROMPT: (Enter the identity (genus) of*:)
TRANS: (THE IDENTITY OF *)
UPDATED-BY: (RULE021 RULE003 ... RULE166)

Multi-Valued Parameter

INFECT: <INFECT is an attribute of a patient and is therefore a member of
the list PROP-PT>

EXPECT: (ONEOF (PERITONITIS BRAIN-ABCESS MENINGITIS
BACTEREMIA UPPER-URINARY-TRACT-INFECTION ...
ENDOCARDITIS))

LOOKAHEAD: (RULE115 RULE149 ... RULE045)
PROMPT l: (Is there evidence that the patient has a (VALU)?)
TRANS: (AN INFECTIOUS DISEASE DIAGNOSIS FOR *)
UPDATED-BY: (RULE157 RULE022 ... RULEI05)

FIGURE 5-2 Examples of the three types of clinical parame-
ters. As shown, each clinical parameter is characterized by a set
of properties described in the text.

LABDATA

LOOKAHEAD

a single one of the possible parameter values; the
value of interest is substituted for (VALU) in the
question.
This property is a flag, which is either T or NIL;
if T it indicates that the clinical parameter is a

piece of primitive data, the value of which may be
known with certainty to the user (see Section
5.2.2).
This property is a list of all rules in the system that
reference the clinical parameter in the premise.



9O Details of the Consultation System

UPDATED-BY

CONTAINED-IN

TRANS

DEFAULT

CONDITION

This property is a list of all rules in the system in
which the action or else clause permits a
conclusion to be made regarding the value of the
clinical parameter.
This property is a list of all rules in the system in
which the action or else clause references the
clinical parameter but does not cause its value to
be updated.
This property is used to translate an occurrence of
this parameter into its English representation; the
context of the parameter is substituted for the
asterisk during translation.
This property is used only with clinical parameters
for which EXPECT = (NUMB); it gives the
expected units for numerical answers (days, years,
grams, etc.).
This property, when utilized, is an executable LISP
expression that is evaluated before MYCIN
requests the value of the parameter; if the
CONDITION is true, the question is not asked
(e.g., "Don’t ask for an organism’s subtype if its
genus is not known by the user").

The uses of these properties will be discussed throughout the remain-
der of this chapter. However, a few additional points are relevant here.
First, it should be noted that the order of rules for the properties LOOK-
AHEAD, UPDATED-IN, and CONTAINED-IN is arbitrary and does not
affect the program’s advice. Second, EXPECT and TRANS are the only
properties that must exist for every clinical parameter. Thus, for example,
if there is no PROMPT or PROMPT1 stored for a parameter, the system
assumes that it simply cannot ask the user for the value of the parameter.
Finally, note in Figure 5-2 the difference in the TRANS property for yes-
no and non-yes-no parameters. In general, a parameter and its value may
be translated as follows:

THE <attribute> OF <object> IS <value>

However, for a yes-no parameter such as FEBRILE, it is clearly necessary
to translate the parameter in a fashion other than this:

THE FEBRILE OF PATIENT-I IS YES

Our solution has been to suppress the YES altogether and simply to say:

PATIENT-1 IS FEBRILE



System Knowledge 91

5.1.4 Certainty Factors

Chapter 11 presents a detailed description of certainty factors and their
theoretical foundation. This section therefore provides only a brief over-
view of" the subject. A familiarity with the characteristics of certainty factors
(CF’s) is necessary for the discussion of MYCIN during the remainder 
this chapter.

The value of every clinical parameter is stored by MYCIN along with
an associated certainty factor that reflects the system’s "belief" that the
value is correct. This formalism is necessary because, unlike domains in
which objects either have or do not have some attribute, in medical diag-
nosis and treatment there is often uncertainty regarding attributes such as
the significance of" the disease, the efficacy of a treatment, or the diagnosis
itself. CF’s are an alternative to conditional probability that has several
advantages in MYCIN’s domain.

A certainty factor is a number between - 1 and + 1 that reflects the
degree of belief in a hypothesis. Positive CF’s indicate there is evidence
that the hypothesis is valid. The larger the CF, the greater is the belief in
the hypothesis. When CF = 1, the hypothesis is known to be correct. On
the other hand, negative CF’s indicate that the weight of evidence suggests
that the hypothesis is false. The smaller the CF, the greater is the belief
that the hypothesis is invalid. CF = - 1 means that the hypothesis has been
effectively disproven. When CF = 0, there is either no evidence regarding
the hypothesis or the supporting evidence is equally balanced by evidence
suggesting that the hypothesis is not true.

MYCIN’s hypotheses are statements regarding values of clinical pa-
rameters for the various nodes in the context tree. For example, sample
hypotheses are

hi = The identity of ORGANISM-1 is streptococcus
h2 = PATIENT-1 is febrile
h3 = The name of PATIENT-1 is John Jones

We use the notation CF[h,E]=X to represent the certainty factor
for the hypothesis h based on evidence E. Thus, if CF[hl,E ] = .8,
CF[h2,E] = -.3, and CF[ha,E] = + 1, the three sample hypotheses above
may be qualified as follows:

CF[hl,E] = .8 : There is strongly suggestive evidence (.8) that
the identity of ORGANISM-1 is streptococcus

CF[h2,E] = -.3 : There is weakly suggestive evidence (.3) that
PATIENT-1 is not febrile

CF[h3,E] = +1 : It is definite (1) that the name of PATIENT-1 
John Jones

Certainty factors are used in two ways. First, as noted, the value of
every clinical parameter is stored with its associated certainty factor. In this
case the evidence E stands for all information currently available to MY-



92 Details of the Consultation System

CIN. Thus, if the program needs the identity of ORGANISM-I, it may
look in its dynamic data base and find:

IDENT of ORGANISM-1 = ((STREPTOCOCCUS .8))
B

The second use of CF’s is in the statement of decision rules themselves.

In this case the evidence E corresponds to the conditions in the premise
of the rule. Thus

x
A&B&C~D

is a representation of the statement CF[D,(A & B & C)] = X. For example,
consider the following rule:

IF: 1) The stain of the organism is grampos, and
2) The morphology of the organism is coccus, and
3) The growth conformation of the organism is chains

THEN: There is suggestive evidence (.7) that the
identity of the organism is streptococcus

This rule may also be represented as CF[hl,e] = .7, where hi is the hy-
pothesis that the organism (context of the rule) is Streptococcus and e is
the evidence that it is a gram-positive coccus growing in chains.

Since diagnosis is, in effect, the problem of selecting a disease from a
list of competing hypotheses, it should be clear that MYCIN may simul-
taneously be considering several hypotheses regarding the value of a clin-

ical parameter. These hypotheses are stored together, along with their CF’s,
for each node in the context tree. We use the notation Val[C,P] to signify
the set of all hypotheses regarding the value of the clinical parameter P
for the context C. Thus, if MYCIN has reason to believe that ORGANISM-
1 may be either a Streptococcus or a Staphylococcus, but Pneumococcus has
been ruled out, its dynamic data base might well show:

VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS .6)(STAPHYLOCOCCUS 
(DIPLOCOCCUS-PNEUMONIAE -1))

It can be shown that the sum of the CF’s for supported hypotheses
regarding a single-valued parameter (i.e., those parameters for which the
hypotheses are mutually exclusive) cannot exceed 1 (Shortlif’fe and Buch-
anan, 1975). Multi-valued parameters, on the other hand, may have several
hypotheses that are all known to be true, for example:

VaI[PATIENT-1,ALLERGY] = ((PENICILLIN 1)(AMPICILLIN 
(CARBENICILLIN 1)(METHICILLIN 

As soon as a hypothesis regarding a single-valued parameter is proved to
be true, all competing hypotheses are effectively disproved:

VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS 1)(STAPHYLOCOCCUS-1)
(DIPLOCOCCUS-PNEUMONIAE -1))



System Knowledge 93

In Chapter 11 we demonstrate that CF[h,E] = -CF[--nh,E]. This ob-
servation has important implications for the way MYCIN handles the bi-
nary-valued attributes we call yes-no parameters. Since "yes" is "~no," it is
not necessary to consider "yes" and "no" as competing hypotheses for the
value of" a yes-no parameter (as we do for single-valued parameters). In-
stead, we can always express "no" as "yes" with a reversal in the sign of the
CE This means that VaI[C,P] is always equal to the single value "yes," along
with its associated CF, when P is a yes-no parameter.

We discuss below MYCIN’s mechanism for adding to the list of hy-
potheses in Val[C,P] as new rules are invoked and executed. However, the
following points should be emphasized here:

1. The strength of the conclusion associated with the execution of a rule
reflects not only the CF assigned to the rule, but also the program’s
degree of belief regarding the validity of the premise.

2. The support of several rules favoring a single hypothesis may be assim-
ilated incrementally on the list Val[C,P] by using the special combining
functions described in Chapter 11.

5.1.5 Functions for the Evaluation of Premise
Conditions

This section describes the evaluation of the individual conditions (see
<condition>, Section 5.1.1) in the premise of rules. Conditions in general
evaluate to true or false (T or NIL). Thus they may at first glance 
considered simple predicates on the values of clinical parameters. However,
since there may be several competing hypotheses on the list Val[C,P], each
associated with its own degree of belief as reflected by the CF, conditional
statements regarding the value of parameters can be quite complex. All
predicates are implemented as LISP functions. The functions that under-
take the required analysis are of three varieties, specified by the designa-
tions <funcl>, <func2>, and <special-func> in the BNF rule descrip-
tion. This section explains the <funcl> and <func2> predicates. The
<special-func> category is deferred until later, however, so that we may
first introduce our specialized knowledge structures.

There are four predicates in the category <funcl>. These functions
do not form conditionals on specific values of a clinical parameter but are
concerned with the more general status of knowledge regarding the attri-
butes in question. For example, KNOWN[ORGANISM-I,IDENT] is an
invocation of the <funcl> predicate KNOWN; it would return true if the
identity of ORGANISM-1 were known, regardless of the value of the clin-
ical parameter IDENT. KNOWN and the other <funcl> predicates may
be formally defined as follows:



94 Details of the Consultation System

Predicates of the Category <funcl >

Let V = Val[C,P] be the set of all hypotheses regarding the value of the
clinical parameter P for the context C.

Let Mv = Max[V] be the most strongly supported hypothesis in V (i.e., the
hypothesis with the largest CF).

Let CFmv = CF[Mv, E] where E is the total available evidence.

Then, if P is either a single-valued or multi-valued parameter, the four
predicates (functions) may be specified as follows:

Function If Then Else

KNOWN[C,P] CFmv > .2 T NIL
NOTKNOWN[C,P] CFmv -< .2 T NIL

DEFINITE[C,P] CFmv = 1 T NIL
NOTDEFINITE[C,P] CFmv < 1 T NIL

In words, these definitions reflect MYCIN’s convention that the value of a
parameter is known if the CF of the most highly supported hypothesis
exceeds .2. The .2 threshold was selected empirically. The implication is
that a positive CF less than .2 reflects so little evidence supporting the
hypothesis that there is virtually no reasonable hypothesis currently known.
The interrelationships among these functions are diagrammed on a CF
number line in Figure 5-3. Regions specified are the range of values for
CFmv over which the function returns T.

As was pointed out in the preceding section, however, yes-no param-
eters are special cases because we know CF[YES,E] = -CF[NO,E]. Since
the values of yes-no parameters are always stored in terms of YES, MYCIN
must recognize that a YES with CF = -.9 is equivalent to a NO with CF
= .9. The definitions of the four <funcl> predicates above do not reflect
this distinction. Therefore, when P is a yes-no parameter, the four func-
tions are specified as follows:

Function If Then Else

KNOWN[C,P] ]CFmvI > ,2 T NIL
NOTKNOWN[C,P] ICFmv]-< .2 T NIL

DEFINITE[C,P] ICFmvl = 1 T NIL
NOTDEFINITE[C,P] ICFmvl < 1 T NIL

Figure 5-4 shows the relationship among these functions for yes-no param-
eters.

There are nine predicates in the category <func2>. Unlike the
<funcl> predicates, these functions control conditional statements re-
garding specific values of the clinical parameter in question. For example,
SAME{ORGANISM-I,IDENT, E.COLI] is an invocation of the <func2>



System Knowledge 95

NOTKNOWN ..I
"I

KNOWN

4 NOTDEFINITE ~)

-1

J
-.2

J
0 .2

i
t

DEFINITE

FIGURE 5-3 Diagram indicating the range of CF values
over which the <funcl> predicates hold true when applied to
multi-valued or single-valued (i.e., non-yes-no) clinical param-
eters. Vertical lines and parentheses distinguish closed and non-
closed certainty factor ranges, respectively.

predicate SAME; it would return a non-NIL value if the identity of OR-
GANISM-1 were known to be E. coli. SAME and the other <func2> pred-
icates may be formally defined as tollows:

Predicates of the Category <func2>

Let V = VaI[C,P] be the set of all hypotheses regarding the value of the
clinical parameter P for the context C.

Let I = Intersection[V, LST] be the set of all hypotheses in V that also occur
in the set LST; LST contains the possible values of P for comparison
by the predicate function; it usually contains only a single element; if
no element in LST is also in V, I is simply the empty set.

Let Mi = Max[I] be the most strongly confirmed hypothesis in I; thus Mi is
NIL if" I is the empty set.

Let CFmi = CF[Mi,E] where CFmi = 0 if Mi is NIL.

Then the <func2> predicates are specified as follows:



96 Details of the Consultation System

NOTKNOWN
J

r KNOWN ( KNOWN
J
"1

NOTDEFINITE ;)

-1

I
t

DEFINITE

-.2 0 .2

I I
t

DEFINITE

FIGURE 5-4 Diagram indicating the range of CF values over
which the <funcl> predicates hold true when applied to yes-
no clinical parameters.

Function If Then Else

SAME[C,ELST] CFmi > .2 CFmi NIL
THOUGHTNOT[C,ELST] CFmi < - .2 - CFmi NIL

NOTSAME[C,ELST] CFmi -< .2 T NIL
MIGHTBE[C,ELST] CFmi >- -.2 T NIL

VNOTKNOWN[C,P, LST] [CFmi[ -< .2 T NIL
DEFIS[C,ELST] CFmi = + l T NIL

DEFNOT[C,ELST] CFmi = - 1 T NIL
NOTDEFIS[C,ELST] .2 < CFmi < ! T NIL

NOTDEFNOT[C,P, LST] - 1 < CFmi < -.2 T NIL

The names of the functions have been selected to reflect their semantics.
Figure 5-5 shows a graphic representation of each function and also ex-
plicitly states the interrelationships among them.

Note that SAME and THOUGHTNOT are different from all the
other functions in that they return a number (CF) rather than T if the
defining condition holds. This feature permits MYCIN to record the de-
gree to which premise conditions are satisfied. In order to explain this



System Knowledge 97

THOUGHTNOT ~- ) ( ~ SAME
7 i

VNOTKNOWN

I"

I.
"ll"

MIGHTBE

( ¢ NOTDEFNOT ~- ) ( ~ NOTDEFIS ~- )

-1 -.2 0 .2 + 1

I I I I
t t

DEFNOT DEFIS

SAME or NOTSAME = THOUGHTNOT or MIGHTBE = T
NOTSAME -- VNOTKNOWN or THOUGHTNOT

THOUGHTNOT - NOTDEFNOT or DEFNOT
MIGHTBE = VNOTKNOWN or SAME

SAME = NOTDEFIS or DEFIS

FIGURE 5-5 Diagram indicating the range of CF values over
which the <func2> predicates hold true. The logical relation-
ships of these predicates are summarized below the diagram.

point, we must discuss the SAND function that oversees the evaluation of
the premise of a rule. The reader will recall the BNF description:

<premise> :: = (SAND <condition> ... <condition>)

SAND is similar to the standard LISP AND function in that it evaluates
its conditional arguments one at a time, returning false (NIL) as soon as 
condition is found to be false, and otherwise returning true (T). The dif-
ference is that SAND expects some of its conditions to return numerical
values rather than simply T or NIL. If an argument condition returns NIL



98 Details of the Consultation System

(or a number equal to .2 or less), it is considered false and SAND stops
considering subsequent arguments. On the other hand, nonnumeric values
of conditions are interpreted as indicating truth with CF = 1. Thus each
true condition either returns a number or a non-NIL value that is inter-
preted as 1. SAND then maintains a record of the lowest value returned
by any of its arguments. This number, termed TALLY, is a certainty tally,
which indicates MYCIN’s degree of belief in the premise (see Combining
Function 2 in Chapter 11). Thus .2 < TALLY -< 1, where TALLY = 1 in-
dicates that MYCIN believes the premise to be true with certainty.

Most of the predicates that evaluate conditions in the premise of a rule
return either T or NIL as we have shown. Consider, however, the semantics
of the most commonly used function, SAME, and its analogous function,
THOUGHTNOT. Suppose MYCIN knows:

VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS .7)(STAPHYLOCOCCUS 

Then it seems clear that

SAME[ORGANISM-1 ,IDENT, STREPTOCOCCUS]

is in some sense "more true" than

SAME[ORGANISM-1 ,IDENT, STAPHYLOCOCCUS]

even though both hypotheses exceed the threshold CF = .2. If SAME
merely returned T, this distinction would be lost. Thus, for this example:

whereas
and

SAME[ORGANISM-I,IDENT, STREPTOCOCCUS] = .7
SAME[ORGANISM-I,IDENT, STAPHYLOCOCCUS] = .3
KNOWN[ORGANISM-I,IDENT] = T
NOTDEFIS[ORGANISM-I,IDENT, STREPTOCOCCUS] = T

A similar argument explains why THOUGHTNOT returns a CF rather
than T. It is unclear whether any of the other <func2> predicates should
return a CF rather than T; our present conviction is that the semantics of
those functions do not require relative weightings in the way that SAME
and THOUGHTNOT do.

Consider a brief example, then, of the way in which the premise of a
rule is evaluated by SAND. The following ORGRULE:

IF: 1) The stain of the organism is gramneg, and
2) The morphology of the organism is rod, and
3) The aerobicity of the organism is aerobic

THEN: There is strongly suggestive evidence (.8) that
the class of the organism is enterobacteriaceae

is internally coded in LISP as:

PREMISE:

ACTION:

(SAND(SAME CNTXT GRAM GRAMNEG)
(SAME CNTXT MORPH ROD)
(SAME CNTXT AIR AEROBIC))

(CONCLUDE CNTXT CLASS ENTEROBACTERIACEAE TALLY .8)



System Knowledge 99

Suppose this rule has been invoked for consideration of ORGANISM-l;
i.e., the context of’ the rule (CNTXT) is the node in the context tree termed
ORGANISM-1. Now suppose that MYCIN has the following information
in its data base (we will discuss later how it gets there):

VaI[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))
VaI[ORGANISM-1,MORPH] = ((ROD .8)(COCCUS 
VaI[ORGANISM-1,AIR] = ((AEROBIC .6)(FACUL 

SAND begins by evaluating SAME[ORGANISM-I,GRAM,GRAMNEG].
The function returns CF = 1.0, so TALLY isset to 1.0 (see definition of
TALLY in the description of SAND above). Next SAND evaluates the sec-
ond premise condition, SAME[ORGANISM-1,MORPH,ROD], which re-
turns .8. Since the first two conditions both were found to hold, SAND
evaluates SAME[ORGANISM-1,AIR,AEROBIC], which returns .6. Thus
TALLY is set to .6, and SAND returns T. Since the premise is true, MYCIN
may now draw the conclusion indicated in the action portion of the rule.
Note, however, that CONCLUDE has as arguments both .8 (i.e., the CF
for the rule as provided by the expert) and TALLY (i.e., the certainty tally
for the premise). CONCLUDE and the other functions that control infer-
ences are described later.

5.1.6 Static Knowledge Structures

Although all MYCIN’s inferential knowledge is stored in rules, there are
various kinds of" static definitional information, which are stored differently
even though they are accessible from rules.

Tabular and List-Based Knowledge

There are three categories of knowledge structures that could be discussed
in this section. However, one of them, MYCIN’s dictionary, is used prin-
cipally for natural language understanding and will therefore not be de-
scribed. The other two data structures are simple lists and knowledge ta-
bles.

Simple lists: Simple lists provide a mechanism for simplifying references
to variables and optimizing knowledge storage by avoiding unnecessary
duplication. Two examples should be sufficient to explain this point.

As was shown earlier, the EXPECT property for the clinical parameter
IDENT is

(ONEOF (ORGANISMS))

ORGANISMS is the name of a linear list containing the names of all bac-



100 Details of the Consultation System

teria known to MYCIN. There is also a clinical parameter named COV-
ERFOR for which the EXPECT property is

(ONEOF ENTEROBACTERIACEAE (ORGANISMS) G COCCI C-COCCI)

Fhus, by storing the organisms separately on a list named ORGANISMS,
we avoid having to duplicate the list of names in the EXPECT property of
both IDENT and COVERFOR. Furthermore, using the variable name
rather than internal pointers to the list structure facilitates references to
the list of organisms whenever it is needed.

A second example involves the several rules in the system that make
conclusions based on whether an organism was isolated from a site that is
normally sterile or nonsterile. STERILESITES is the name of a simple list
containing the names of all normally sterile sites known to the system.
There is a similar list named NONSTERILESITES. Thus many rules can
have the condition (SAME CNTXT SITE STERILESITES), and the sites
need not be listed explicitly in each rule.

Knowledge tables: In conjunction with the special functions discussed
in the next subsection, MYCIN’s knowledge tables permit a single rule to
accomplish a task that would otherwise require several rules. A knowledge
table contains a comprehensive record of certain clinical parameters plus
the values they take on under various circumstances. For example, one of
MYCIN’s knowledge tables itemizes the gram stain, morphology, and aero-
bicity for every bacterial genus known to the system. Consider, then, the
task of inferring an organism’s gram stain, morphology, and aerobicity if
its identity is known with certainty. Without the knowledge table, MYCIN
would require several rules of the following form:

IF: The identity of the organism is definitely W
THEN: 1) It is definite (1) that the gramstain of the

organism is X, and
2) It is definite (1) that the morphology of the

organism is Y, and
3) It is definite (1) that the aerobicity of the

organism is Z

Instead, MYCIN contains a single rule of the following form:

RULE030

IF: The identity of the organism is known with certainty
THEN: It is definite (1) that these parameters - GRAM

MORPH AIR - should be transferred from the identity
of the organism to this organism

Thus if ORGANISM-1 is known to be a Streptococcus, MYCIN can use
RULE030 to access the knowledge table to look up the organism’s gram
stain, morphology, and aerobicity.



System Knowledge 101

Specialized Functions

The efficient use of knowledge tables requires the existence of four spe-
cialized functions (the category <special-func> from Section 5.1.1). 
explained below, each function attempts to add members to a list named
GRIDVAL and returns T if at least one element has been found to be
placed in GRIDVAL.

Functions of the Category <special-func>
Let V= VaI[C,P] be the set of all hypotheses regarding the value of the

clinical parameter P for the context C.

Let CLST be a list of objects that may be characterized by clinical param-
eters.

Let PLST be a list of clinical parameters.

Then:

Function

SAME2[C,CLST, PLST] {X

NOTSAME2 [C,CLST, PLST] {X

SAME3[C,P, CLST, P*] {X

NOTSAME3[C,P, CLST, P*] {X

GRID[<object>,<attribute>] {X

Value of GRIDVAL

X ~ CLST & (for all P in PLST)
SAME [C,P, VaI[X,P]]}

X e CLST & (for at least one P in
PLST) N OTSAM E[C,P, Val[X,P]]}

X ~ CLST & SAME[C,P, Val[X,P*]]}

X ¢ CLST & NOTSAME
[ C,P, Val[x,e* ]]}

X is a value of the <attribute> of
<object>}

GRID is merely a function for looking up information in the specialized
knowledge table.

The use of these functions is best explained by example. Consider the
following verbalization of a rule given us by one of our collaborating ex-
perts:

If you know the portal of entry of the current organism and also
know the pathogenic bacteria normally associated with that site, you
have evidence that the current organism is one of those pathogens
so long as there is no disagreement on the basis of gram stain,
morphology, or aerobicity.

This horrendous sounding rule is coded quite easily using
SAME2[C,CLST, PLST], where C is the current organism, CLST is the list



102 Details of the Consultation System

of pathogenic bacteria normally associated with the portal of entry of C,
and PLST is the set of properties (GRAM MORPH AIR). GRID is used 
set up CLST. The LISP version of the rule is

PREMISE: (SAND (GRID (VAL CNTXT PORTAL) PATH-FLORA)
(SAME2 CNTXT GRIDVAL (QUOTE (GRAM MORPH AIR))))

ACTION: (CONCLIST CNTXT IDENT GRIOVAL .8)

Note that GRID sets up the initial value of GRIDVAL for use by SAME2,
which then redefines GRIDVAL for use in the action clause. This rule is
translated (to somewhat stilted English) as follows:

IF: 1) The list of likely pathogens associated with the
portal of entry of the organism is known, and

2) This current organism and the members you are
considering agree with respect to the following
properties: GRAM MORPH AIR

THEN: There is strongly suggestive evidence (3) that
each of them is the identity of this current
organism

SAME2 and NOTSAME2 can also be used for comparing the values of
the same clinical parameters lbr two or more different contexts in the
context tree, for example:

SAME2[ORGANISM-1 (ORGANISM-2 ORGANISM-3) (GRAM MORPH)]

On the other hand, SAME3 and NOTSAME3 are useful for comparing
different parameters of two or more contexts. Suppose you need a pred-
icate that returns T if the site of a prior organism (ORGANISM-2) is the
same as the portal of entry of the current organism (ORGANISM-l). This
is accomplished by the following:

SAME3[ORGANISM-1 PORTAL (ORGANISM-2) SITE]

5.1.7 Translation of Rules into English

Rules are translated into a subset of English using a set of recursive func-
tions that piece together bits of text. We shall demonstrate the process
using the premise condition (GRID (VAL CNTXT PORTAL) PATH-
FLORA), which is taken from the rule in the preceding section.

The reader will recall that every clinical parameter has a property
named TRANS that is used for translation (Section 5.1.3). In addition,
every function, simple list, or knowledge table that is used by MYCIN’s
rules also has a TRANS property. For our example the following TRANS
properties are relevant:

GRID:
VAL:
PORTAL:
PATH-FLORA:

(THE (2) ASSOCIATED WITH (1) IS KNOWN)
(((2 1 
(THE PORTAL OF ENTRY OF *)
(LIST OF LIKELY PATHOGENS)



Use of the Rules to Give Advice 103

The numbers in the translations of functions indicate where the translation
of the corresponding argument should be inserted. Thus the translation
of GRID’s second argument is inserted for the (2) in GRID’s TRANS prop-
erty. The extra parentheses in the TRANS for VAL indicate that the trans-
lation of VAL’s first argument should be substituted for the asterisk in the
translation of VAL’s second argument. Since PORTAL is a PROP-ORG,
CNTXT translates as "the organism," and the translation of (VAL CNTXT
PORTAL) becomes

The portal of entry of the organism

Substituting VAL’s translation for the (1) in GRID’s TRANS and PATH-
FLORA’s translation for the (2) yields the final translation of the condi-
tional clause:

The list of likely pathogens associated with the portal of entry of the organism is known

Similarly, (GRID (VAL CNTXT CLASS) CLASSMEMBERS)

translates as: The list of members associated with the class of the organism is known

All other portions of rules use essentially this same procedure for
translation. An additional complexity arises, however, if it is necessary to
negate the verbs in action or else clauses when the associated CF is negative.
The translator program must therefore recognize verbs and know how to
negate them when evidence in a premise supports the negation of the
hypothesis that is referenced in the action of the rule.

5.2 Use of the Rules to Give Advice

The discussion in Section 5.1 was limited to the various data structures
used to represent MYCIN’s knowledge. The present section proceeds to
an explanation of how MYCIN uses that knowledge in order to give advice.

5.2.1 MYCIN’s Control Structure

MYCIN’s rules are directly analogous to the consequent theorems intro-
duced by Hewitt in his PLANNER system (Hewitt, 1972). They permit 
reasoning chain to grow dynamically on the basis of the user’s answers to
questions regarding the patient. This subsection describes that reasoning
network, explaining how it grows and how MYCIN manages to ask ques-
tions only when there is a reason for doing so.



104 Details of the Consultation System

Consequent Rules and Recursion

MYCIN’s task involves a four-stage decision problem:

1. Decide which organisms, if any, are causing significant disease.
2. Determine the likely identity of the significant organisms.
3. Decide which drugs are potentially useful.
4. Select the best drug or drugs.

Steps 1 and 2 are closely interrelated since determination of an organism’s
significance may well depend on its presumed identity. Furthermore, MY-
CIN must consider the possibility that the patient has an infection with an
organism not specifically mentioned by the user (e.g., an occult abscess
suggested by historical information or subtle physical findings). Finally, if
MYCIN decides that there is no significant infection requiring antimicro-
bial therapy, it should skip Steps 3 and 4, advising the user that no treat-
ment is thought to be necessary. MYCIN’s task area theretore can be de-
fined by the following rule:

RULE092

IF: 1) There is an organism which requires therapy, and
2) Consideration has been given to the possible

existence of additional organisms requiring therapy,
even though they have not actually been recovered
from any current cultures

THEN: [)o the following:
1) Compile the list of possible therapies which, based

upon sensitivity data, may be effective against
the organisms requiring treatment, and

2) Determine the best therapy recommendations from the
compiled list

OTHERWISE: Indicate that the patient does not require therapy

This rule is one of MYCIN’s PATRULES (i.e., its context is the patient)
and is known as the goal rule for the system. A consultation session with
MYCIN results from a simple two-step procedure:

1. Create the patient context as the top node in the context tree (see Sec-
tion 5.3 for an explanation of how nodes are added to the tree).

2. Attempt to apply the goal rule to the newly created patient context.

After the second step, the consultation is over. Thus we must explain how
the simple attempt to apply the goal rule to the patient causes a lengthy
consultation with an individualized reasoning chain.

When MYCIN first tries to evaluate the premise of the goal rule, the
first condition requires that it know whether there is an organism that
requires therapy. MYCIN then reasons backwards in a manner that may
be informally paraphrased as follows:



Use of the Rules to Give Advice 105

How do I decide whether there is an organism requiring therapy?
Well, RULE090 tells me that organisms associated with significant
disease require therapy. But I don’t even have any organisms in the
context tree yet, so I’d better ask first if there are any organisms, and
if there are I’ll try to apply RULE090 to each of them. However, the
premise of RULE090 requires that I know whether the organism is
significant. I have a bunch of rules for making this decision
(RULE038 RULE042 RULE044 RULEI08 RULE122). For example,
RULE038 tells me that if the organism came from a sterile site it is
probably significant. Unfortunately, I don’t have any rules for infer-
ring the site of a culture, however, so I guess I’ll have to ask the user
for this information when I need it...

This goal-oriented approach to rule invocation and question selection is
automated via two interrelated procedures, a MONITOR that analyzes
rules and a FINDOUT mechanism that searches for data needed by the
MONITOR.

The MONITOR analyzes the premise of a rule, condition by condition,
as shown in Figure 5-6. ~ When the value of the clinical parameter refer-
enced in a condition is not yet known to MYCIN, the FINDOUT mecha-
nism is invoked in an attempt to obtain the missing information.
FINDOUT then either derives the necessary information (from other
rules) or asks the user for the data.

FINDOUT has a dual strategy depending on the kind of information
required by the MONITOR. This distinction is demonstrated in Figure
5-7. In general, a piece of data is immediately requested from the user (an
ASKI question) if it is considered in some sense "primitive," as are, for
example, most laboratory data. Thus, if the physician knows the identity
of an organism (e.g., from a lab report), we would prefer that the system
request that information directly rather than try to deduce it via decision
rules. However, if the user does not know the identity of the organism,
MYCIN uses its knowledge base in an effort to deduce the range of likely
organisms. Nonlaboratory data are those kinds of information that require
inference even by the clinician, e.g., whether or not an organism is a con-
taminant or whether or not a previously administered drug was effective.
FINDOUT always attempts to deduce such information first, asking the
physician only when MYCIN’s knowledge base of rules is inadequate for
making the inference from the information at hand (an ASK2 question).

We have previously described the representation of clinical parameters
and their associated properties. The need for two of these properties,
LABDATA and UPDATED-BY, should now be clear. The LABDATA flag
for a parameter allows FINDOUT to decide which branch to take through

3As discussed in Section 5.1.5, the MONITOR uses the SAND function to oversee the premise
evaluation.



106 Details of the Consultation System

THE MONITOR FOR RULES (~ START

CONSIDER THE
FIRST CONDITION
IN THE PREMISE
OF THE RULE

GATHER THE
NECESSARY

INFORMATION
USING THE FINDOUT

MECHANISM

no

HAS
NECESSARY

INFORMATION BEEN CONSIDER THE

GATHERED TO DECIDE NEXT CONDITION

IF THE CONDITION IN THE PREMISE

IS TRUE?

IS ~ yes
THE CONDITION -

l no (or unknown)
~ no

ADD THE
CONCLUSION OF

REJECT THE RULE TO THE
THE ONGOING RECORD

RULE OF THE CURRENT
CONSU LTATION

FIGURE 5-6 Flow chart describing how the MONITOR ana-
lyzes a rule and decides whether or not it applies in the clinical
situation under consideration. Each condition in the premise of
the rule references some clinical parameter, and all such con-
ditions must be true for the rule to be accepted (Shortliffe et
al., 1975).



Use of the Rules to Give Advice 107

THE FINDOUT MECHANISM

1

START )

RETRIEVE Y = LIST OF RULES
WHICH MAY AID IN DEDUCING

THE VALUE OF THE PARAMETER

IAPPLY MON/TOR TO EACH RULE
IN THE LIST Y

ASK USER FOR THE VALUE
OF THE PARAMETER

yes

1
ASK USER FOR THE VALUE

OF THE PARAMETER

RETURN JI Y = .o. s
i
I WHICH MAY AID IN DEDUCING
i
THE VALUE OF THE PARAMETER

]

IAPPLY MONITOR TO EACH RULE ]
IN THE LIST Y

FIGURE 5-7 Flow chart describing the strategy for determin-
ing which questions to ask the physician. The derivation of
values of parameters may require recursive calls to the MON-
ITOR, thus dynamically creating a reasoning chain specific to
the patient under consideration (Shortliffe et al., 1975).

its decision process (Figure 5-7). Thus IDENT is marked as being LAB-
DATA in Figure 5-2.

Recall that the UPDATED-BY property is a list of all rules in the system
that permit an inference to be made regarding the value of the indicated
parameter. Thus UPDATED-BY is precisely the list called Y in Figure
5-7. Every time a new rule is added to MYCIN’s knowledge base, the name
of the rule is added to the UPDATED-BY property of the clinical param-



108 Details of the Consultation System

eter referenced in its action or else clause. Thus the new rule immediately
becomes available to FINDOUT at times when it may be useful. It is not
necessary to specify explicitly its interrelationships with other rules in the
system.

Note that FINDOUT is accessed from the MONITOR, but the MON-
ITOR may also be accessed from FINDOUT. This recursion allows self-
propagation of a reasoning network appropriate for the patient under
consideration and selects only the necessary questions and rules. The first
rule passed to the MONITOR is always the goal rule. Since the first con-
dition in the premise of this rule references a clinical parameter named
TREATFOR, and since the value of TREATFOR is of course unknown
before any data have been gathered, the MONITOR asks FINDOUT to
trace the value of TREATFOR. This clinical parameter is not LABDATA,
so FINDOUT takes the left-hand pathway in Figure 5-7 and sets Y to the
UPDATED-BY property of TREATFOR, the two-element list (RULE090
RULE149). The MONITOR is then called again with RULE090 as the rule
for consideration, and FINDOUT is used to trace the values of clinical
parameters referenced in the premise of RULE090. Note that this process
parallels the informal paraphrase of MYCIN’s reasoning given above.

It is important to recognize that FINDOUT does not check to see
whether the premise condition is true. Instead, the FINDOUT mechanism
traces the clinical parameter exhaustively and returns its value to the MON-
ITOR, where the conditional expression may then be evaluated. 4 Hence
FINDOUT is called one time at most for a clinical parameter (in a given
context--see Section 5.3). When FINDOUT returns a value to the MON-
ITOR, it marks the clinical parameter as having been traced. Thus when
the MONITOR reaches the question "HAS ALL NECESSARY INFOR-
MATION BEEN GATHERED TO DECIDE IF THE CONDITION IS
TRUE?" (Figure 5-6), the parameter is immediately passed to FINDOUT
unless it has been previously marked as traced.

Figure 5-8 is a portion of MYCIN’s initial reasoning chain. In Figure
5-8 the clinical parameters being traced are underlined. Thus REGIMEN
is the top goal of the system (i.e., it is the clinical parameter in the action
clause of the goal rule). Below each parameter are the rules (from the
UPDATED-BY property) that may be used for inferring the parameter’s
value. Clinical parameters referenced in the premise of each of these rules
are then listed at the next level in the reasoning network. Rules with mul-
tiple premise conditions have their links numbered in accordance with the
order in which the parameters are traced (by FINDOUT). ASK1 indicates
that a parameter is LABDATA, so its value is automatically asked of the
user when it is needed. ASK2 refers to parameters that are not LABDATA
but for which no inference rules currently exist, e.g., if the dose of a drug
is adequate. One of the goals in the future development of MYCIN’s knowl-

4The process is slightly different for muhi-valued parameters; see Section 5.2.1,



109

|

I-. ooo

Z~ OOe

~{~’"
N -

11 ~ ~w~

u.i

-!-~®



110 Details of the Consultation System

edge base is to acquire enough rules allowing the values of non-LABDATA
parameters to be inferred so that ASK2 questions need no longer occur.

Note that the reasoning network in Figure 5-8 is drawn to reflect
maximum size. In reality many portions of such a network need not be
considered. For example, RULE042 (one of the UPDATED-BY rules under
SIGNIFICANCE) is rejected if the SITE condition is found to be false by
the MONITOR. When that happens, neither COLLECT nor SIGNUM
needs to be traced by FINDOUT, and those portions of the reasoning
network are not created. Thus the order of conditions within a premise is
highly important. In general, conditions referencing the most common
parameters (i.e., those that appear in the premises of the most rules) are
put first in the premises of new rules to act as an effective screening mech-
anism.

A final comment is necessary regarding the box labeled "REJECT
THE RULE" in Figure 5-6. This step in the MONITOR actually must
check to see if the rule has an else clause. If so, and if the premise is known
to be false, the conclusion indicated by the else clause is drawn. If there is
no else clause, or if the truth status of the premise is uncertain (e.g., the
user has entered UNKNOWN when asked the value of one of the relevant
parameters), the rule is simply ignored without any conclusion having been
reached.

Asking Questions of the User

The conventions for communication between a program and a physician
are a primary factor determining the system’s acceptability. We have there-
fore designed a number of features intended to simplify the interactive
process that occurs when FINDOUT reaches one of the boxes entitled
"ASK USER FOR THE VALUE OF THE PARAMETER" (Figure 5-7).

When MYCIN requests the value of a single-valued or yes-no param-
eter, it uses the PROMPT property of the parameter. The user’s response
is then compared with the EXPECT property of the parameter. If the
answer is one of the expected responses, the program simply continues
through the reasoning network. Otherwise, MYCIN checks the system dic-
tionary to see if the user’s response is a synonym for one of the recognized
answers. If this attempt also fails, MYCIN uses Interlisp spelling-correction
routines (Teitelman, 1974) to see if a simple spelling or typographical error
will account for the unrecognized response. If so, the program makes the
correction, prints its assumption, and proceeds as though the user had
made no error. If none of these mechanisms succeeds, MYCIN tells the
user that the response is not recognized, displays a list of sample responses,
and asks the question again.

Multi-valued parameters are handled somewhat differently. FIND-
OUT recursively traces such parameters in the normal fashion, but when
forced to ask a question of the user, it customizes its question to the con-



Use of the Rules to Give Advice 111

dition being evaluated in the MONITOR. Suppose, for example, the MON-
ITOR were evaluating the condition (SAME CNTXT INFECT MENIN-
GITIS), i.e., "Meningitis is an infectious disease diagnosis for the patient."
If FINDOUT were to ask the question using the regular PROMPT strategy,
it would request:

What is the infectious disease diagnosis for PATIENT-1 ?

The problem is that the patient may have several diagnoses, each of which
can be expressed in a variety of ways. If the physician were to respond:

A meningeal inflammation that is probably of infectious origin

MYCIN would be forced to try to recognize that this answer implies men-
ingitis. Our solution has been to customize questions for multi-valued pa-
rameters to reflect the value being checked in the current premise condi-
tion. The PROMPT1 property is used, and questions always expect a yes
or no response:

Is there evidence that the patient has a meningitis?

The advantages of this approach are the resulting ability to avoid natural
language processing during the consultation itself and the posing of ques-
tions that are specific to the patient under consideration.

In addition to the automatic spelling-correction capability described
above, there are a number of options that may be utilized whenever MY-
CIN asks the user a question:

UNKNOWN

?

??
RULE

QA

WHY

Used to indicate that the physician does not know
the answer to the question, usually because the data
are unavailable (may be abbreviated U or UNK)
Used to request a list of sample recognized
responses
Used to request a list of all recognized responses
Used to request that MYCIN display the translation
of the current decision rule. FINDOUT simply
translates the rule being considered by the
MONITOR. This feature provides a simple
capability for explaining why the program is asking
the question. However, it cannot explain motivation
beyond the current decision rule.
Used to digress temporarily in order to use the
Explanation System. The features of this system are
explained in Chapter 18.
Used to request a detailed explanation of the
question being asked. This feature is much more
conversational than the RULE option above and
permits investigation of the current state of the
entire reasoning chain.



112 Details of the Consultation System

CHANGE ###

STOP

HELP

Used to change the answer to a previous question.
Whenever MYCIN asks a question, it prints a
number in front of the prompt. Thus CHANGE 4
means "Go back and let me reanswer question 4."
The complexities involved in this process are
discussed below.
Halts the program without completing the
consultation
Prints this list

5.2.2 Creation of the Dynamic Data Base

The Consultation System maintains an ongoing record of the consultation.
These dynamic data include information entered by the user, inferences
drawn using decision rules, and record-keeping data structures that facil-
itate question answering by the Explanation System (Chapter 18).

Data Acquired from the User

Except for questions related to propagation of the context tree, all queries
from MYCIN to the physician request the value of a specific clinical pa-
rameter for a specific node in the context tree. The FINDOUT mechanism
screens the user’s response, stores it in MYCIN’s dynamic data base, and
returns the value to the MONITOR for evaluation of the conditional state-
ment that generated the question in the first place. The physician’s re-
sponse is stored, of course, so that future rules containing conditions ref-
erencing the same clinical parameter will not cause the question to be asked
a second time.

As has been noted, however, the values of clinical parameters are al-
ways stored along with their associated certainty factors. A physician’s re-
sponse must therefore have a CF associated with it. MYCIN’s convention
is to assume CF = 1 for the response unless the physician explicitly states
otherwise. Thus the following exchange:

7) Staining characteristics of ORGANISM-1 (gram):
**GRAMNEG

results in: VaI[ORGANISM-1,GRAM] = ((GRAMNEG 1.0))

If, on the other hand, the user is fairly sure of the answer to a question
but wants to indicate uncertainty, he or she may enter a certainty factor in
parentheses after the response. MYCIN expects the number to be an in-
teger between - 10 and + 10; the program divides the number by 10 to
obtain a CE Using integers simplifies the user’s response and also discour-



Use of the Rules to Give Advice 113

ages comparisons between the number and a probability measure. Thus
the following exchange:

8) Enter the identity (genus) ORGANISM-l:
** ENTEROCOCCUS (8)

results in: VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS-GROUP-D ,8))

This example also shows how the dictionary is used to put synonyms into
standardized form for the patient’s data base (i.e., Enterococcus is another
name for a group-D Streptococcus).

A variant of this last example is theuser’s option to enter multiple
responses to a question, as long as each is modified by a CE For example:

13) Did ORGANISM-2 grow in clumps, chains, or pairs?
** CLUMPS (6) CHAINS (3) PAIRS 

results in: VaI[ORGANISM-2,CONFORM] = ((CLUMPS .6)(CHAINS .3)(PAIRS-.8))

The CF’s associated with the parameter values are then used for evaluation
of premise conditions as described earlier. Note that the user’s freedom to
modify answers increases the flexibility of MYCIN’s reasoning. Without the
CF option, the user might well have responded UNKNOWN to question
13 above. The demonstrated answer, although uncertain, gives MYCIN
much more information than would have been provided by a response of
UNKNOWN.

Data Inferred by the System

This subsection explains the <conclusion> item from the BNF rule
description, i.e., the functions that are used in action or else clauses when
a premise has shown that an indicated conclusion may be drawn. There
are only three such functions, two of which (CONCLIST and TRANS-
LIST) reference knowledge tables (Section 5.1.6) but are otherwise depen-
dent on the third, a function called CONCLUDE. CONCLUDE takes five
arguments:

CNTXT

PARAM

VALUE
TALLY

The node in the context tree about which the conclusion is
being made
The clinical parameter whose value is being added to the
dynamic data base
The inferred value of the clinical parameter
The certainty tally for the premise of the rule (see Section
5.1.5)



114 Details of the Consultation System

CF The certainty factor for the rule as judged by the expert
from whom the rule was obtained

The translation of CONCLUDE depends on the size of CF:

]CF]-> .8
.4 ~ levi < .8

ICFI < .4
Computed CF

"There is strongly suggestive evidence that..."
"There is suggestive evidence that..."
"There is weakly suggestive evidence that..."
"There is evidence that..."

Thus the following conclusion:

(CONCLUDE CNTXT IDENT STREPTOCOCCUS TALLY .7)

translates as:

There is suggestive evidence (.7) that the identity of the organism is streptococcus

If, for example, the rule with this action clause were successfully applied
to ORGANISM-1, an organism for which no previous inferences had been
made regarding identity, the result would be:

VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS X))

where X is the product of .7 and TALLY (see Combining Function 4,
Chapter 11). Thus the strength of the conclusion reflects both the CF for
the rule and the extent to which the premise of the rule is believed to be
true for ORGANISM-1.

Suppose a second rule were now found that contains a premise true
for ORGANISM-1 and that adds additional evidence to the assertion that
the organism is a Streptococcus. This new evidence somehow has to be com-
bined with the CF (=X) that is already stored for the hypothesis that
ORGANISM-1 is a Streptococcus. If Y is the CF calculated for the second
rule (i.e., the product of the TALLY for that rule and the CF assigned to
the rule by the expert), the CF for the hypothesis is updated to Z so that:

VaI[ORGANISM-I,IDENT] = ((STREPTOCOCCUS Z))

where Combining Function 1 gives Z = X + Y(1 - X). This function 
justified and discussed in detail in Chapter 11.

Similarly, additional rules leading to alternate hypotheses regarding
the identity of ORGANISM-1 may be successfully invoked. The new hy-
potheses, along with their associated CF’s, are simply appended to the list
of hypotheses in Val[ORGANISM-1,IDENT]. Note, of course, that the CF’s
of some hypotheses may be negative, indicating that there is evidence sug-
gesting that the hypothesis is not true. When there is both positive and
negative evidence for a hypothesis, Combining Function 1 must be used
in a modified form.

A final point to note is that values of parameters are stored identically
regardless of whether the information has been inferred or acquired from



Use of the Rules to Give Advice 115

the user. The source of a piece of information is maintained in a separate
record. It is therefore easy to incorporate new rules that infer values of
parameters for which ASK2 questions to the user were once necessary.

Creating an Ongoing Consultation Record

In addition to information provided or inferred regarding nodes in the
context tree, MYCIN’s dynamic data base contains a record of the consul-
tation session. This record provides the basis for answering questions about
the consuhation (Chapter 18).

Two general types of records are kept. One type is information about
how values of" clinical parameters were obtained. If the value was inferred
using rules, a record of those inferences is stored with the rules themselves.
Thus whenever an action or else clause is executed, MYCIN keeps a record
of the details. The second type of record provides a mechanism for explain-
ing why questions were asked. MYCIN maintains a list of questions, their
identifying numbers, the clinical parameter and context involved, plus the
rule that led to generation of the question. This information is useful when
the user retrospectively requests an explanation for a previous question
(Chapter 18).

5.2.3 Self-Referencing Rules

As new rules were acquired from the collaborating experts, it became ap-
parent that MYCIN would need a small number of rules that departed
from the strict modularity to which we had otherwise been able to adhere.
For example, one expert indicated that he would tend to ask about the
typical Pseudomonas-type skin lesions only if he already had reason to be-
lieve that the organism was a Pseudomonas. If the lesions were then said to
be evident, however, his belief that the organism was a Pseudomonas would
be increased even more. A rule reflecting this fact must somehow imply
an orderedness of rule invocation; i.e., "Don’t try this rule until you have
already traced the identity of the organism by using other rules in the
system." Our solution has been to reference the clinical parameter early in
the premise of the rule as well as in the action, for example:

RULE040

IF: 1) The site of the culture is blood, and
2) The identity of the organism may be pseudomonas, and
3) The patient has ecthyma gangrenosum skin lesions

THEN: There is strongly suggestive evidence (.8) that the
identity of the organism is pseudomonas

Note that RULE040 is thus a member of both the LOOKAHEAD property
and the UPDATED-BY property for the clinical parameter IDENT. Rules



116 Details of the Consultation System

having the same parameter in both premise and action are termed se!/’-
referencing rules. The ordered invocation of such rules is accomplished by
a generalized procedure described below.

As discussed in Section 5.2.1, a rule such as RULE040 is originally
invoked because MYCIN is trying to infer the identity of an organism; i.e.,
FINDOUT is asked to trace the parameter IDENT and recursively sends
the UPDATED-BY list for that parameter to the MONITOR. When the
MONITOR reaches RULE040, however, the second premise condition ref-
erences the same clinical parameter currently being traced by FINDOUT.
If the MONITOR merely passed IDENT to FINDOUT again (as called
for by the simplified flow chart in Figure 5-6), FINDOUT would begin
tracing IDENT for a second time, RULE040 would be passed to the MON-
ITOR yet again, and an infinite loop would occur.

The solution to this problem is to let FINDOUT screen the list called
Y in Figure 5-7, i.e., the UPDATED-BY property for the parameter it is
about to trace. Y is partitioned by FINDOUT into regular rules and self-
referencing rules (where the latter category is defined as those rules that
also occur on the LOOKAHEAD list for the clinical parameter). FIND-
OUT passes the first group of rules to the MONITOR in the normal
fashion. After all these rules have been tried, FINDOUT marks the pa-
rameter as having been traced and then passes the self-referencing rules
to the MONITOR. In this way, when the MONITOR considers the second
condition in the premise of RULE040, the condition is evaluated without
a call to FINDOUT because the parameter has already been marked as
traced. Thus the truth of the premise of a self-referencing rule is deter-
mined on the basis of the set of non-self-referencing rules, which were
evaluated first. If one of the regular rules permitted MYCIN to conclude
that an organism might be a Pseudomonas, RULE040 might well succeed
when passed to the MONITOR. This mechanism for handling self-refer-
encing rules satisfies the intention of an expert when he or she gives us
decision criteria in self-referencing form.

It should be noted that this approach minimizes the potential for self-
referencing rules to destroy certainty factor commutativity. By holding
these rules until last, we insure that the certainty tally for any of their
premises (see Section 5.1.5) is the same regardless of the order in which
the non-self-referencing rules were executed. If there is more than one
self-referencing rule successfully executed for a given context and param-
eter, however, the order of’ their invocation may affect the final CE The
approach we have implemented thus seeks merely to minimize the poten-
tial undesirable effects of self referencing rules.

5.2.4 Preventing Reasoning Loops

Self-referencing rules are actually a special case of a more general problem.
Reasoning loops involving multiple rules cannot be handled by the mech-
anism described above. The difference is that self-referencing rules are



Use of the Rules to Give Advice 117

intentional parts of MYCIN’s knowledge base whereas reasoning loops are
artifacts that must somehow be avoided.

For the following discussion we introduce the following notation:

[q] X ::> Y

means that decision rule [q] uses clinical parameter X to reach a conclusion
regarding the value of clinical parameter Y. Thus a self-referencing rule
may be represented by:

[a] E ::> E

where E is the clinical parameter that is referenced in both the premise
and the action of the rule. Consider now the following set of rules:

[1] A ::> B

[2] B ::> C

[3] C ::> D

[4] D ::> A

Rule [1], for example, says that under certain unspecified conditions, the
value of A can be used to infer the value of B. Now suppose that the
MONITOR asks FINDOUT to trace the clinical parameter D. Then MY-
CIN’s recursive mechanism would create the following reasoning chain:

[4] [1] [2] [3]
...D ::> A ::> B ::> C ::> D

The difference between this looped reasoning chain and a self-referencing
rule is that Rule [4] was provided as a mechanism for deducing the value
of A, not for reinforcing the system’s belief in the value of D. In cases
where the value of A is of primary interest, the use of Rule [4] would be
appropriate.

MYCIN solves this problem by keeping track of all parameters cur-
rently being traced by the FINDOUT mechanism. The MONITOR then
simply ignores a rule if one of the parameters checked in its premise is
already being traced. The result, with the value of D as the goal, is a three-
membered reasoning chain in the case above:

[1] [2] [3]
A ::> B ::> C ::> D

Rule [4] is rejected because parameter D is already being traced elsewhere
in the current reasoning chain. If the value of A were the main goal,
however, the chain would be



118 Details of the Consultation System

[2] [3] [4]
B ::> C ::> D ::> A

Note that this simple mechanism allows us to have potential reasoning
loops in the knowledge base but to select only the relevant nonlooping
portions for consideration of a given patient.

A similar problem can occur when a rule permits two conclusions to
be made, each about a different clinical parameter. MYCIN prevents loops
in such circumstances by refusing to permit the same rule to occur twice
in the current reasoning chain.

5,3 Propagation of the Context Tree

The mechanism by which the context tree is customized for a given patient
has not yet been discussed. As described in Section 5.2.2, the consultation
system begins simply by creating the patient context and then attempting
to execute the goal rule. All additional nodes in the context tree are thus
added automatically during the unwinding of MYCIN’s reasoning regard-
ing the premise of the goal rule. This section first explains the data struc-
tures used for creating new nodes. Mechanisms for deciding when new
nodes should be added are then discussed.

5.3.1 Data Structures Used for Sprouting Branches

Section 5.1.2 was devoted to an explanation of the context tree. At that
time we described the different kinds of contexts and explained that each
node in the tree is an instantiation of the appropriate context-type. Each
context-type is characterized by the following properties:

PROMPT 1

PROMPT2

PROMPT3

PROPTYPE

A sentence used to ask the user whether the first node
of this type should be added to the context tree;
expects a yes-no answer
A sentence used to ask the user whether subsequent
nodes of this type should be added to the context tree
Replaces PROMPT1 when it is used. This is a message
to be printed out if MYCIN assumes that there is at
least one node of this type in the tree.
Indicates the category of clinical parameters (see
Section 5.1.3) that may be used to characterize 
context of this type



Propagation of the Context Tree 119

SUBJECT

SYN

TRANS

TYPE

MAINPROPS

ASSOCWITH

Indicates the categories of rules that may be applied
to a context of this type
Indicates a conversational synonym for referring to a
context of this type. MYCIN uses SYN when filling in
the asterisk of PROMPT properties for clinical
parameters.
Used for English translations of rules referencing this
type of context
Indicates what kind of internal name to give a context
of this type
Lists the clinical parameters, if any, that are to be
automatically traced (by FINDOUT) whenever 
context of this type is created
Gives the context-type of nodes in the tree
immediately above contexts of this type

Two sample context-types are shown in Figure 5-9. The following ob-
servations may help clarify the information given in that figure:

1. PRIORCULS: Whenever a prior culture is created, it is given the name
CULTURE-# (see TYPE), where # is the next unassigned culture num-
ber. The values of SITE and WHENCUL are immediately traced using
the FINDOUT mechanism (see MAINPROPS). The culture node is put
in the context tree below a node of type PERSON (see ASSOCWITH),
and the new context may be characterized by clinical parameters of the
type PROP-CUL (see PROPTYPE). The prior culture may be the con-
text for either PRCULRULES or CULRULES (see SUBJECT) and 
translated, in questions to the user, as "this (site) culture" (see SYN)
where (site) is replaced by the site of the culture if it is known.

2. CURORG: Since there is a PROMPT3 rather than a PROMPT1, MY-
CIN prints out the PROMPT3 message and assumes (without asking)
that there is at least one CURORG for each CURCUL (see AS-
SOCWITH); the other CURORG properties correspond to those de-
scribed above for PRIORCULS.

Whenever MYCIN creates a new context using these models, it prints
out the name of the new node in the tree, e.g.:

...... ORGANISM-1 ......

Thus the user is familiar with MYCIN’s internal names for the cultures,
organisms, and drugs under discussion. The node names may then be used
in MYCIN’s questions at times when there may be ambiguity regarding
which node is the current context, e.g.:

Is the patient’s illness with the staphylococcus (ORGANISM-2) a hospital-acquired infection?



120 Details of the Consultation System

PRIORCULS

ASSOCWITH: PERSON
MAINPROPS: (SITE WHENCUL)
PROMPTI: (Were any organisms that were significant (but no longer

require therapeutic attention) isolated within the last
approximately 30 days?)

PROMPT2: (Any other significant earlier cultures from which pathogens
were isolated?)

PROPTYPE: PROP-CUL
SUBJECT: (PRCULRULES CULRULES)
SYN: (SITE (this * culture))
TRANS: (PRIOR CULTURES OF *)
TYPE: CULTURE-

CURORG
ASSOCWITH: CURCUL
MAINPROPS: (IDENT GRAM MORPH SENSITIVS)
PROMPT2: (Any other organisms isolated from * for which you would like

a therapeutic recommendation?)
PROMPT3: (I will refer to the first offending organism from * as:)
PROPTYPE: PROP-ORG
SUBJECT: (ORGRULES CURORGRULES)
SYN: (IDENT (the *))
TRANS: (CURRENT ORGANISMS OF *)
TYPE: ORGANISM-

FIGURE 5-9 Context trees such as that shown in Figure 5-1
are generated from prototype context-types such as those shown
here. The defining properties are described in the text.

It should also be noted that when PROMPT1 or PROMPT2 is used to
ask a question, the physician need not be aware that the situation is dif-
ferent from that occurring when FINDOUT asks questions. All the user
options described in Section 5.2.1 operate in the normal fashion.

Finally, the MAINPROPS property (later called INITIALDATA) re-
quires brief explanation. The claim was previously made that clinical pa-
rameters are traced and their values requested by FINDOUT only when
they are needed for evaluation of a rule that has been invoked. Yet we

must now acknowledge that certain LABDATA parameters are automati-
cally traced whenever a node for the context tree is created. The reason
for this departure is an attempt to keep the program acceptable to physi-
cians. Since the order of rules on UPDATED-BY lists is arbitrary, the order
in which questions are asked is somewhat arbitrary as well. We have found
that physicians are annoyed if the "basic" questions are not asked first, as
soon as the context is created. The MAINPROPS convention forces certain



Propagation of the Context Tree 121

standard questions early in the characterization of a node in the context
tree. Parameters not on the MAINPROPS list are then traced in an arbi-
trary order that depends on the order in which rules are invoked. Since
the parameters on MAINPROPS lists are important pieces of information
that would uniformly be traced by FINDOUT anyway, the convention we
have implemented forces a standardized ordering of the "basic" questions
without generating useless information.

5.3.2 Explicit Mechanisms for Branching

There are two situations under which MYCIN attempts to add new nodes
to the context tree. The simpler case occurs when rules explicitly reference
contexts that have not yet been created. Suppose, for example, MYCIN is
trying to determine the identity of a current organism and therefore in-
vokes the following CURORGRULE:

IF: 1) The identity of the organism is not known
with certainty, and

2) This current organism and prior organisms of
the patient agree with respect to the following
properties: GRAM MORPH

THEN:There is weakly suggestive evidence that each of
them is a prior organism with the same identity
as this current organism

The second condition in the premise of this rule references other nodes
in the tree, namely nodes of the type PRIORORGS. If no such nodes exist,
the MONITOR asks FINDOUT to trace PRIORORGS in the normal fash-
ion. The difference is that PRIORORGS is not a clinical parameter but a
context-type. FINDOUT therefore uses PROMPT1 of PRIORORGS to ask
the user if there is at least one organism. If so, an instantiation of PRIOR-
ORGS is added to the context tree, and its MAINPROPS are traced.
PROMPT2 is then used to see if there are any additional prior organisms,
and the procedure continues until the user indicates there are no more
PRIORORGS that merit discussion. Finally, FINDOUT returns the list of
prior organisms to the MONITOR so that the second condition in the rule
above can be evaluated.

5.3.3 Implicit Mechanisms for Branching

There are two kinds of implicit branching mechanisms. One of these is
closely associated with the example of the preceding section. As shown in
Figure 5-1, a prior organism is associated with a prior culture. But the
explicit reference to prior organisms in the rule above made no mention
of prior cultures. Thus if FINDOUT tries to create a PRIORORGS in



122 Details of the Consultation System

response to an explicit reference but finds there are no PRIORCULS, the
program knows there is an implied need to ask the user about prior cul-
tures before asking about prior organisms. Since PRIORCULS are asso-
ciated with the patient, and since the patient node already exists in the
context tree, only one level of implicit branching is required in the evalu-
ation of the rule.

The other kind of implicit branching occurs when the MONITOR
attempts to evaluate a rule for which no appropriate context exists. For
example, the first rule invoked in an effort to execute the goal rule is a
CURORGRULE (see RULE090, Figure 5-8). Since no current organism
has been created at the time the MONITOR is passed this CURORGRULE,
MYCIN automatically attempts to create the appropriate nodes and then
to apply the invoked rule to each.

5.4 Selection of Therapy

The preceding discussion concentrated on the premise of MYCIN’s prin-
cipal goal rule (RULE092). This section explains what happens when the
premise is found to be true and the two-step action clause is executed.
Unlike other rules in the system, the goal rule does not lead to a conclusion
(Section 5.2.2) but instead instigates actions. The functions in the action
of the goal rule thus correspond to the <actfunc> class that was introduced
in the BNF description. The first of these functions causes a list of potential
therapies to be created. The second allows the best drug or drugs to be
selected from the list of possibilities.

5.4.1 Creation of the Potential Therapy List

There is a class of decision rules, the THERULES, that are never invoked
by MYCIN’s regular control structure because they do not occur on the
UPDATED-BY list of any clinical parameter. These rules contain sensitivity
information for the various organisms known to the system, for example:

iF: The identity of the organism is pseudomonas
THEN: I recommend therapy chosen from among the following drugs:

1 - colistin (.96)
2 - polymyxin (.96)
3 - gentamicin (.96)
4 - carbenicillin (.65)
5 - sulfisoxazole(.64)

The numbers associated with each drug are the probabilities that a Pseu-
domonas isolated at Stanford Hospital will be sensitive (in vitro) to the in-



Selection of Therapy 123

dicated drug. The sensitivity data were acquired from Stanford’s micro-
biology laboratory (and could easily be adjusted to reflect changing
resistance patterns at Stanford or the data for some other hospital desiring
a version of MYCIN with local sensitivity information). Rules such as the
one shown here provide the basis for creating a list of potential therapies.
There is one such rule for every kind of organism known to the system.

MYCIN selects drugs only on the basis of the identity of offending
organisms. Thus the program’s first task is to decide, for each current
organism deemed to be significant, which hypotheses regarding the or-
ganism’s identity (IDENT) are sufficiently likely that they must be consid-
ered in choosing therapy. MYCIN uses the CF’s of the various hypotheses
in order to select the most likely identities. Each identity is then given an
item number (see below) and the process is repeated for each significant
current organism. The Set of Indications for therapy is then printed out,
e.g.:

My therapy recommendation will be based on the following possible
identities of the organism(s) that seem to be significant:

<Item 1> The identity of ORGANISM-1 may be
STREPTOCOCCUS-GROUP-D

<Item 2> The identity of ORGANISM-1 may be
STREPTOCOCCUS-ALPHA

<Item 3> The identity of ORGANISM-2 is PSEUDOMONAS

Each item in this list of therapy indications corresponds to one of the
THERULES. Thus MYCIN retrieves the list of potential therapies for each
indication from the associated THERULE. The default (in vitro) statistical
data are also retrieved. MYCIN then replaces the default sensitivity data
with real data about those of" the patient’s organisms, if any, for which
actual sensitivity information is available from the laboratory. Furthermore,
if" MYCIN has inferred sensitivity information from the in vivo perfor-
mance of a drug that has already been administered to the patient, this
information also replaces the default sensitivity data. Thus the compiled
list of potential therapies is actually several lists, one for each item in the
Set of" Indications. Each list contains the names of drugs and, in addition,
the associated numbers representing MYCIN’s judgment regarding the
organism’s sensitivity to each of the drugs.

5.4.2 Selecting the Preferred Drug from the List

When MYCIN recommends therapy, it tries to suggest a drug for each of
the items in the Set of Indications. Thus the problem reduces to selecting
the best drug from the therapy list associated with each item. Clearly, the
probability that an organism will be sensitive to a drug is an important
factor in this selection process. However, there are several other consid-



124 Details of the Consultation System

erations. MYCIN’s strategy is to select the best drug on the basis of sensi-
tivity information but then to consider contraindications fi)r that drug.
Only if a drug survives this second screening step is it actually recom-
mended. Furthermore, MYCIN also looks for ways to minimize the num-
ber of drugs recommended and thus seeks therapies that cover for more
than one of the items in the Set of Indications. The selection/screening
process is described in the following two subsections.

Choosing the Apparent First-Choice Drug

The procedure used for selecting the apparent first-choice drug is a com-
plex algorithm that is somewhat arbitrary and is thus currently (1974)
under revision. This section describes the procedure in somewhat general
terms since the actual LISP functions and data structures are not partic-
ularly enlightening.

There are three initial considerations used in selecting the best therapy
for a given item:

1. the probability that the organism is sensitive to the drug;

2. whether the drug is already being administered;

3, the relative efficacy of drugs that are otherwise equally supported by
the first two criteria.

As is the case with human consultants, MYCIN does not insist on a
change in therapy if the physician has already begun a drug that may work,
even if" that drug would not otherwise be MYCIN’s first choice. Drugs with
sensitivity numbers within .05 of one another are considered to be almost
identical on the basis of the first criterion. Thus the rule in the previous
section, for example, indicates no clear preference among colistin, poly-
myxin, and gentamicin5 for Pseudomonas infections (if default sensitivity
information from the rule is used). However, our collaborating experts
have ranked the relative efficacy of antimicrobials on a scale from 1 to 10.
The number reflects such factors as whether the drug is bacteriostatic or
bacteriocidal or its tendency to cause allergic sensitization. Since genta-
micin has a higher relative efficacy than either colistin or polymyxin, it is
the first drug considered for Pseudomonas infections (unless known sensi-
tivity information or previous drug experience indicates that an alternate
choice is preferable).

Once MYCIN has selected the apparent best drug for each item in the
Set of Indications, it checks to see if one of the drugs is also useful for one
or more of the other indications. For example, if the first-choice drug for

5Ed. note: Amikacin and tobramyciu were not yet available in 1974 when this rule was written.
The knowledge base was later updated with the new drug infi)rmation.



Selection of Therapy 125

Item 1 is the second-choice drug for Item 2 and if the second-choice drug
for Item 2 is almost as strongly supported as the first-choice drug, Item
l’s first-choice drug also becomes Item 2’s first-choice drug. This strategy
permits MYCIN to attempt to minimize the number of drugs to be rec-
ommended.

A similar strategy is used to avoid giving two drugs of the same drug
class. For example, MYCIN knows that if the first choice for one item is
penicillin and the first choice for another is ampicillin, then the ampicillin
may be given for both indications (because ampicillin covers essentially all
organisms sensitive to penicillin).

In the ideal case MYCIN will find a single drug that effectively covers
for all the items in the Set of Indications. But even if each item remains
associated with a different drug, a screening stage to look for contraindi-
cations is required. This rule-based process is described in the next sub-
section. It should be stressed, however, that the manipulation of drug lists
described above is algorithmic; i.e., it is coded in LISP functions that are
called from the action clause of the goal rule. There is considerable "knowl-
edge" in this process. Since rule-based knowledge provides the foundation
of MYCIN’s ability to explain its decisions, it would be desirable eventually
to remove this therapy selection method from functions and place it in
decision rules.6

Rule-Based Screening for Contraindications

Unlike the complex list manipulations described in the preceding subsec-
tion, criteria for ruling out drugs under consideration may be effectively
placed in rules. The rules in MYCIN for this purpose are termed OR-
DERRULES. A sample rule of this type is:

IF: 1) The therapy under consideration is tetracycline, and
2) The age (in years) of the patient is less than 

THEN: There is strongly suggestive evidence (.8) that
tetracycline is not a potential therapy for use
against the organism

In order to use MONITOR and FINDOUT with such rules, we must con-
struct appropriate nodes in the context tree and must be able to charac-
terize them with clinical parameters. The context-type used for this
purpose is termed POSSTHER and the parameters are classified as PROP-
THER. Thus when MYCIN has selected the apparent best drugs for the
items in the Set of Indications, it creates a context corresponding to each
of these drugs. POSSTHER contexts occur below CURORGS in the context
tree. FINDOUT is then called to trace the relevant clinical parameter,

6Ed. note: See the next chapter tor a discussion of how this was later accomplished.



126 Details of the Consultation System

which collects contraindication information (i.e., this becomes a new goal
statement), and the normal recursive mechanism through the MONITOR
insures that the proper ORDERRULES are invoked.

ORDERRULES allow a great deal of" drug-specific knowledge to be
stored. For example, the rule above insures that tetracycline is ruled out
in youngsters who still have developing bone and teeth. 7 Similar rules tell
MYCIN never to give streptomycin or carbenicillin alone, not to give sul-
fonamides except in urinary tract infections, and not to give cephalothin,
clindamycin, lincomycin, vancomycin, cef’azolin, or erythromycin if the pa-
tient has meningitis. Other ORDERRULES allow MYCIN to consider the
patient’s drug allergies, dosage modifications, or ecological considerations
(e.g., save gentamicin for Pseudomonas, Serratia, and Hafnia unless the pa-
tient is so sick that you cannot risk using a different aminoglycoside while
awaiting lab sensitivity data). Finally, there are rules that suggest appro-
priate combination therapies (e.g., add carbenicillin to gentamicin for
known Pseudomonas infections). In considering such rules MYCIN often is
forced to ask questions that never arose during the initial portion of the
consultation. Thus the physician is asked additional questions during the
period after MYCIN has displayed the items in the Set of Indications but
before any therapy is actually recommended.

After the presumed first-choice drugs have been exposed to the OR-
DERRULE screening process, MYCIN checks to see whether any of the
drugs is now contraindicated. If so, the drug-ranking process is repeated.
New first-choice drugs are then subjected to the ORDERRULES. The pro-
cess continues until all the first-choice drugs have been instantiated as
POSSTHERS. These then become the system’s recommendations. Note
that this strategy may result in the recommendation of drugs that are only
mildly contraindicated so long as they are otherwise strongly favored. The
therapy recommendation itself takes the following form:

My preferred therapy recommendation is as follows:
In order to cover for Items <1> <2> <3>:

Give the following in combination:
1. PENICILLIN

Dose: 285,000 UNITS/KG/DAY - IV
2. GENTAMICIN

Dose: 1.7 MG/KG Q8H - IV OR IM
Comments: MODIFY DOSE IN RENAL FAILURE

The user may also ask for second, third, and subsequent therapy recom-
mendations until MYCIN is able to suggest no reasonable alternatives. The
mechanism for these iterations is merely a repeat of the processes described
above but with recommended drugs removed from consideration.

7Ed. note: This rule ignores any statement of the mechanism whereby its conclusion follows
from its premise. The lack of" underlying "support" knowledge accounts for changes intro-
duced in GUIDON when MYCIN’s rules were used for education. See Part Eight for further
discussion of this point.



Mechanisms for Storage of Patient Data 127

5.5 Mechanisms for Storage of Patient Data

5.5.1 Changing Answers to Questions

If a physician decides he or she wants to change a response to a question
that has already been answered, MYCIN must do more than merely re-
display the prompt, accept the user’s new answer, and make the appro-
priate change to the value of the clinical parameter in question. In general,
the question was originally asked because the premise of a decision rule
referenced the clinical parameter. Thus the original response affected the
evaluation of at least one rule, and subsequent pathways in the reasoning
network may have been affected as well. It is therefore necessary for MY-
CIN somehow to return to the state it was in at the time the question was
originally asked. Its subsequent actions can then be determined by the
corrected user response.

Reversing all decisions made since a question was asked is a complex
problem, however. The most difficult task is to determine what portions
of a parameter’s cumulative CF preceded or followed the question requir-
ing alteration. In fact, the extra data structures needed to permit this kind
of backing up are so large and complicated, and would be used so seldom,
that it seems preferable simply to restart the consultation from the begin-
ning when the user wants to change one of his or her answers.

Restarting is of course also less than optimal, particularly if it requires
that the physician reenter the answers to questions that were correct the
first time around. Our desire to make the program acceptable to physicians
required that we devise some mechanism for changing answers, but re-
starting from scratch also had obvious drawbacks regarding user accep-
tance of" the system. We therefore needed a mechanism for restarting MY-
CIN’s reasoning process but avoiding questions that had already been
answered correctly. When FINDOUT asks questions, it therefore uses the
following three-step algorithm:

1. Before asking the question, check to see if the answer is already stored
(in the Patient Data Table--see Step 3 below); if the answer is there, use
that value rather than asking the user; otherwise go to Step 2.

2. Ask the question using PROMPT or PROMPT1 as usual.

3. Store the user’s response in the dynamic record of facts about the pa-
tient, called the Patient Data Table, under the appropriate clinical pa-
rameter and context.

The Patient Data Table, then, is a growing record of the user’s responses
to questions from MYCIN. It is entirely separate from the dynamic data
record that is explicitly associated with the nodes in the context tree. Note



128 Details of the Consultation System

that the Patient Data Table contains only the text responses of the user--
there is no CF information (unless included in the user’s response), nor
are there data derived from MYCIN’s rule-based inferences.

The Patient Data Table and the FINDOUT algorithm make the task
of changing answers much simpler. The technique MYCIN uses is the
following:

a. Whenever the user wants to change the answer to a previous question,
he or she enters CHANGE <numbers>, where <numbers> is a list of
the questions whose answers need correction.

b. MYCIN looks up the indicated question numbers in its question record.

c. The user’s responses to the indicated questions are removed from the
ct~rrent Patient Data Table.

d. MYCIN reinitializes the system, erasing the entire context tree, includ-
ing all associated parameters; however it leaves the Patient Data Table
intact except for the responses deleted in (c).

e. MYCIN restarts the consultation from the beginning.

This simple mechanism results in a restarting of the Consultation System
but does not require that the user enter correct answers a second time.
Since the Patient Data Table is saved, Step 1 of the FINDOUT algorithm
above will find all the user’s responses until the first question requiring
alteration is reached. Thus the first question asked the user after he or she
gives the CHANGE command is, in fact, the earliest of the questions he
or she wants to change. There may be a substantial pause after the
CHANGE command while MYCIN reasons through the network to the
first question requiring alteration, but a pause is to be preferred over a
mechanism requiring reentry of all answers. The implemented technique
is entirely general because answers to questions regarding context tree
propagation are also stored in the Patient Data Table.

5.5.2 Remembering Patients for Future Reference

When a consultation is complete, the Patient Data Table contains all re-
sponses necessary for generating a complete consultation for that patient.
It is therefore straightforward to store the Patient Data Table (on disk or
tape) so that it may be reloaded in the future. FINDOUT will automatically
read responses from the table, rather than ask the user, so a consultation
may be run several times on the basis of only a single interactive session.

There are two reasons for storing Patient Data Tables for future ref-
erence. One is their usefulness in evaluating changes to MYCIN’s knowl-
edge base. The other is the resulting ability to reevaluate patients once new
clinical information becomes available.



Mechanisms for Storage of Patient Data 129

Evaluating New Rules

New rules may have a large effect on the way a given patient case is handled
by MYCIN. For example, a single rule may reference a clinical parameter
not previously sought or may lead to an entirely new chain in the reasoning
network. It is therefore useful to reload Patient Data Tables and run a new
version of MYCIN on old patient cases. A few new questions may be asked
(because their responses are not stored in the Patient Data Table). Conclu-
sions regarding organism identities may then be observed, as may the pro-
gram’s therapeutic recommendations. Any changes from the decisions
reached during the original run (i.e., when the Patient Data Table was
created) must be explained. When a new version of MYCIN evaluates
several old Patient Data Tables in this manner, aberrant side effects of new
rules may be found. Thus a library of stored patient cases provides a useful
mechanism for screening new rules before they become an integral part
of MYCIN’s knowledge base.

Reevaluating Patient Cases

The second use for stored Patient Data Tables is the reevaluation of patient
data once additional laboratory or clinical information becomes available.
If a user answers several questions with UNKNOWN during the initial
consultation session, MYCIN’s advice will of course be based on less than
complete information. After storing the Patient Data Table, however, the
physician may return for another consultation in a day or so once he or
she has more specific information. MYCIN can use the previous Patient
Data Table for responses to questions whose answers are still up to date.
The user therefore needs to answer only those questions that reference
new information. A mechanism for the physician to indicate directly what
new data are available has not yet been automated, however,s

A related capability to be implemented before MYCIN becomes avail-
able in the clinical setting is a SAVE command.9 If a physician must leave
the computer terminal midway through a consultation, this option will save
the current Patient Data Table on the disk. When the physician returns to
complete the consultation, he or she will reload the patient record and the
session will continue from the point at which the SAVE command was
entered.

It should be stressed that saving the current Patient Data Table is not
the same as saving the current state of MYCIN’s reasoning. Thus, as we
have stated above, changes to MYCIN’s rule corpus may result in different
advice from the same Patient Data Table.

SEd. note: A RESTART option was subsequently developed to permit reassessment of cases
over time.
9Ed. note: This option was also subsequently implemented.



130 Details of the Consultation System

5.6 Suggested Improvements to the System

This section summarizes some ideas for improvement of the consultation
program described in this chapter. Each of the topics mentioned is the
subject of current (1974) efforts by one or more of the researchers asso-
ciated with the MYCIN project.

5.6.1 Dynamic Ordering of Rules

The order in which rules are invoked by the MONITOR is currently con-
trolled solely by their order on the UPDATED-BY property of the clinical
parameter being traced.l° The order of rules on the UPDATED-BY prop-
erty is also arbitrary, tending to reflect nothing more than the order in
which rules were acquired. Since FINDOUT sends all rules on such lists
to the MONITOR and since our certainty factor combining function is
commutative, the order of rules is unimportant.

Some rules are much more useful than others in tracing the value of
a clinical parameter. For example, a rule with a six-condition premise that
infers the value of a parameter with a low CF requires a great deal of work
(as many as six calls to FINDOUT) with very little gain. On the other hand,
a rule with a large CF and only one or two premise conditions may easily
provide strong evidence regarding the value of the parameter in question.
It may therefore be wise for FINDOUT to order the rules in the UP-
DATED-BY list on the basis of both information content (CF) and the work
necessary to evaluate the premise. Then if the first few rules are success-
fully executed by the MONITOR, the CF associated with one of the values
of the clinical parameter may be so large that invocation of subsequent
rules will require more computational effort than they are worth. If FIN-
DOUT therefore ignores such rules (i.e., does not bother to pass them to
the MONITOR), considerable time savings may result. Furthermore, entire
reasoning chains will in some cases be avoided, and the number of ques-
tions asked the user could accordingly be decreased.l~

5.6.2 Dynamic Ordering of Conditions Within Rules

The MONITOR diagram in Figure 5-6 reveals that conditions are evalu-
ated strictly in the order in which they occur within the premise of the
rule. The order of conditions is therefore important, and the most corn-

l°An exception to this point is the sell-referencing rules--see Section 5.2.3.
t tEd. note: Many of these ideas were later implemented and are briefly mentioned in Chapter

4. For example, meta-rules provided a mechanism for encoding strategies to help select the
most pertinent rules in a set, and the concept of a unity path was implemented to favor chains
of rules that reached conclusions with certainty at each step in the chain.



Suggested Improvements to the System 131

monly referenced clinical parameters should be placed earliest in the prem-
ise.

Suppose, however, that in a given consultation the clinical parameter
referenced in the fourth condition of a rule has already been traced by
FINDOUT because it was referenced in some other rule that the MONI-
TOR has already evaluated. As currently designed, MYCIN checks the first
three conditions first, even if the fourth condition is already known to be
false. Since the first three conditions may well require calls to FINDOUT,
the rule may generate unnecessary questions and expand useless reasoning
chains.

The solution to this problem would be to redesign the MONITOR so
that it reorders the premise conditions, first evaluating those that reference
clinical parameters that have already been traced by FINDOUT. In this
way a rule will not cause new questions or additions to the reasoning net-
work if any of" its conditions are known to be false at the outset.12

5.6.3 Prescreening of Rules

An alternate approach to the problem described in the preceding section
would be for FINDOUT to judge the implications of every parameter it
traces. Once the value has been determined by the normal mechanism,
FINDOUT could use the LOOKAHEAD list for the clinical parameter in
order to identify all rules referencing the parameter in their premise con-
ditions. FINDOUT could then evaluate the relevant conditions and mark
the rule as failing if the condition turns out to be false. Then, whenever
the MONITOR begins to evaluate rules that are invoked by the normal
recursive mechanism, it will check to see if the rule has previously been
marked as false by FINDOUT. If so, the rule could be quickly ruled out
without needing to consider the problem of reordering the premise con-
ditions.

At first glance, the dynamic reordering of premise conditions appears
to be a better solution than the one just described. The problem with rule
prescreening is that it requires consideration of all rules on the parameter’s
LOOKAHEAD list, some of which may never actually be invoked during
the consultation. ~3

5.6.4 Placing All Knowledge in Rules

Although most of MYCIN’s knowledge is placed in decision rules, we have
pointed out several examples of knowledge that is not rule-based. The
simple lists and knowledge tables may be justified on the basis of efficiency,

V2Ed. note: The preview mechanism in MYCIN was eventually implemented to deal with this
issue,
13Ed. note: It was for this reason that the idea outlined here was never implemented.



132 Details of the Consultation System

especially since those knowledge structures may be directly accessed by
rules.

However, the algorithmic mechanisms for therapy selection are some-
what more bothersome. Although we have managed to put many drug-
related decision criteria in the ORDERRULES, the mechanisms for cre-
ating the potential therapy lists and for choosing the apparent first-choice
drug are programmed explicitly in a series of relatively complex LISP
functions. Since MYCIN’s ability to explain itself is based on rule retrieval,
the system cannot give good descriptions of these drug selection proce-
dures. It is therefore desirable to place more of the drug selection knowl-
edge in rules.

Such efforts should provide a useful basis for evaluating the power of
our rule-based formalism. If the goal-oriented control structure we have
developed is truly general, one would hope that algorithmic approaches
to the construction and ordering of lists could also be placed in decision
rule format. We therefore intend to experiment with ways for incorporat-
ing the remainder of MYCIN’s knowledge into decision rules that are in-
voked by the standard MONITOR/FINDOUT process.14

5.6.5 The Need for a Context Graph

The context tree used by MYCIN is the source of one of the system’s
primary problems in attempting to simulate the consultation process. Every
node in the context tree leads to the uppermost patient node by a single
pathway. In reality, however, drugs, patients, organisms, and cultures are
not interrelated in this highly structured fashion. For example, drugs are
often given to cover for more than one organism. The context tree does
not permit a single CURDRUG or PRIORDRUG to be associated with
more than a single organism. What we need, therefore, is a network of
contexts in the form of a graph rather than a pure tree. The reasons why
MYCIN currently needs a tree-structured context network are explained
in Section 5.1.2. We have come to recognize that a context graph capability
is an important extension of the current system, however, and this will be
the subject of future design modifications. 15 When implemented, for ex-
ample, it will permit a physician to discuss a prior drug only once, even
though it may have been given to cover for several prior organisms.

14Ed. note: Rule-based encoding of the therapy selection algorithm was eventually undertaken
and is described in the next chapter.
15Ed. note: This problem was never adequately solved and remains a limitation of the EMYCIN
architecture (Part Five). A partial solution was achieved when predicate functions were de-
veloped that allowed a specific rule to be applied to all contexts of a given type and to draw
inferences in one part of the context tree based on findings elsewhere in the context tree.




