
15
EMYCIN: A Knowledge
Engineer’s Tool for
Constructing Rule-Based
Expert Systems

William van Melle, Edward H. Shortliffe, and
Bruce G. Buchanan

Much current work in artificial intelligence focuses on computer programs
that aid scientists with complex reasoning tasks. Recent work has indicated
that one key to the creatior~:..@f intelligent systems is the incorporation of
large amounts of task-specific knowledge. Building knowledge-based, or
expert, systems from scratch can be very time-consuming, however. This
suggests the need for general tools to aid in the construction of knowledge-
based systems.

This chapter describes an effective domain-independent framework
for constructing one class of expert programs: rule-based consultants. The
system, called EMYCIN, is based on the domain-independent core of the
MYCIN program. We have reimplemented MYCIN as one of" the consul-
tation systems that run under EMYCIN.

15.1 The Task

EMYCIN is used to construct a consultation program, by which we mean a
program that offers advice on problems within its domain of expertise.
The consultation program elicits information relevant to the case by asking

This chapter is a shortened and edited version of a paper appearing in Pergamon-lnfotech state
of the art report on machine intelligence, pp. 249-263. Maidenhead, Berkshire, U.K.: Infotech
Ltd., 1981.

302



Background 303

SYSTEM DESIGNER)

expertise debugging feedback

EMYCIN

Knowledge Base
Construction Aids

Consultation
Driver

Domain

Knowledge

Base

case data advice

FIGURE 15-1 The major roles of EMYCIN: acquiring a
knowledge base from the system designer, and interpreting that
knowledge base to provide advice to a client.

questions. It then applies its knowledge to the specific facts of the case and
informs the user of its conclusions. The user is free to ask the program
questions about its reasoning in order to better understand or validate the
advice given.

There are really two "users" of EMYCIN, as depicted in Figure 15-1.
The system designer, or expert, interacts with EMYCIN to produce a knowledge
base for the domain. EMYCIN then interprets this knowledge base to pro-
vide advice to the client, or consultation user. Thus the combination of EMY-
CIN and a specific knowledge base of domain expertise is a new consultation
program. Some instances of such consultation programs are described be-
low.

15.2 Background

Some of the earliest work in artificial intelligence attempted to create gen-
eralized problem solvers. Programs such as GPS (Newell and Simon, 1972)



304 EMYCIN: A Knowledge Engineer’s Tool

and theorem provers (Nilsson, 1971), for instance, were inspired by the
apparent generality of human intelligence and motivated by the desire to
develop a single program applicable to many problems. While this early
work demonstrated the utility of many general-purpose techniques (such
as problem decomposition into subgoals and heuristic search in its many
forms), these techniques alone did not offer sufficient power for high per-
formance in complex domains.

Recent work has instead focused on the incorporation of large
amounts of task-specific knowledge in what have been called knowledge-
based systems. Such systems have emphasized high performance based on
the accumulation of large amounts of knowledge about a single domain
rather than on nonspecific problem-solving power. Some examples to date
include efforts at symbolic manipulation of algebraic expressions (Moses,
1971), chemical inference (Lindsay et al., 1980), and medical consultations
(Pople, 1977; Shortliffe, 1976). Although these systems display an expert
level of performance, each is powerfill in only a very narrow domain. In
addition, assembling the knowledge base and constructing a working pro-
grain for such domains is a difficult, continuous task that has often ex-
tended over several years. However, because MYCIN included in its design
the goal of keeping the domain knowledge well separated from the pro-
gram that manipulates the knowledge, the basic rule methodology pro-
vided a fbundation for a more general rule-based system.

With the development of EMYCIN we have now come full circle to
GPS’s philosophy of separating the deductive mechanism from the prob-
lem-specific knowledge; however, EMYCIN’s extensive user facilities make
it a much more accessible environment for producing expert systems than
were the earlier programs.1 Like MYCIN’s, EMYCIN’s representation of
facts is in attribute-object-value triples, with an associated certainty factor.
Facts are associated in production rules. Rules of the same form are shown
throughout this book. Figures 16-2 and 16-5 in the next chapter show rules
from two different consultation systems constructed in EMYCIN.

15.2.1 Application of Rules---The Rule Interpreter

The control structure is primarily MYCIN’s goal-directed backward chain-
ing of rules. At any given time, EMYCIN is working toward the goal of
establishing the value of some parameter of a context; this operation is
termed tracing the parameter. To this end, the system retrieves the (pre-
computed) list of rules whose conclusions bear on the goal. SACON’s Rule
50 (see Figures 15-2 and 16-2) would be one of several rules retrieved 
an attempt to determine the stress of a substructure. Then for each rule

IEven so, it is still not an appropriate tool for building certain kinds of application systems
because some of its power comes fl’om the specificity of the rule-based representation and
backward-chaining inference structure. See Section 15.5 fbr a discussion of these limitations.



Background 305

in the list, EMYCIN evaluates the premise; if true, it makes the conclusion
indicated in the action. The order of the rules in the list is assumed to be
arbitrary, and all the rules are applied unless one of them succeeds and
concludes the value of" the parameter with certainty (in which case the
remaining rules are superfluous).

This control structure was also designed to be able to deal gracefully
with incomplete information. If the user is unable to supply some piece of
data, the rules that need the data will fail and make no conclusions. The
system will thus make conclusions, if possible, based on less information.
Similarly, if" the system has inadequate rules (or none at all) for concluding
some parameter, it may ask the user for the value. When too many items
of information are missing, of course, the system will be unable to offer
sound advice.

15.2.2 More on the Rule Representation

There are many advantages to having rules as the primary representation
of knowledge. Since each rule is intended to be a single "chunk" of infor-
mation, the knowledge base is inherently modular, making it relatively easy
to update. Individual rules can be added, deleted, or modified without
drastically affecting the overall performance of the system. The rules are
also a convenient unit for explanation purposes, since a single step in the
reasoning process can be meaningfully explained by citing the English
translation of the rule used.

While the syntax of rules permits the use of any LISP functions as
matching predicates in the premises of rules, or as special action functions
in the conclusions of rules, there is a small set of standard functions that
are most frequently used. The system contains information about the use
of these predicates and functions in the form of function templates. For
example, the predicate SAME is described as follows:

(a) function template:
(b) sample.function call:

(SAME CNTXT PARM VALUE)

(SAME CNTXT SITE BLOOD)

The system can use these templates to "read" its own rules. For example,
the template shown here contains the standard symbols CNTXT, PARM,
and VALUE, indicating the components of the associative triple that SAME
tests. If" clause (b) above appears in the premise of a given rule, the system
can determine that the rule needs to know the site of the culture and, in
particular, that it tests whether the culture site is (i.e., is the same as) blood.
When asked to display rules that are relevant to blood cultures, the system
will know that this rule should be selected. The most common matching
predicates and conclusion functions are those used in MYCIN (see Chapter
5): SAME, NOTSAME, KNOWN, NOTKNOWN, DEFINITE, NOT-
DEFINITE, etc.



306 EMYCIN: A Knowledge Engineer’s Tool

15.2.3 Explanation Capability

As will be described in Part Six, EMYCIN’s explanation program allows the
user of a consultation program to interrogate the system’s knowledge,
either to find out about inferences made (or not made) during a particular
consultation or to examine the static knowledge base in general, indepen-
dently of any specific consultation.

During the consultation, EMYCIN can offer explanations of the cur-
rent, past, and likely future lines of reasoning. If the motivation for any
question that the program asks is unclear, the client may temporarily put
off answering and instead inquire why the information is needed. Since
each question is asked in an attempt to evaluate some rule, a first approx-
imation to an explanation is simply to display the rule currently under
consideration. The program can also explain what reasoning led to the
current point and what use might later be made of the information being
requested. This is made possible by examining records left by the rule
interpreter and by reading the rules in the knowledge base to determine
which are relevant. This form of explanation requires no language under-
standing by the program; it is invoked by simple commands from the client
(WHY and HOW).

Another form of explanation is available via the Question-Answering
(QA) Module, which is automatically invoked after the consultation has
ended, and which can also be entered during the consultation to answer
questions other than those handled by the specialized WHY and HOW
commands mentioned above. The QA Module accepts simple English-lan-
guage questions (a) dealing with any conclusion drawn during the consul-
tation, or (b) about the domain in general. Explanations are again based
on the rules; they should be comprehensible to anyone familiar with the
domain, even if that person is not familiar with the intricacies of the EMY-
CIN system. The questions are parsed by pattern matching and keyword
look-up, using a dictionary that defines the vocabulary of the domain.
EMYCIN automatically constructs the dictionary from the English phrases
used in defining the contexts and parameters of the domain; the system
designer may refine this preliminary dictionary to add synonyms or to fine-
tune QA’s parsing.

15.3 The System-Building Environment

The system designer’s principal task is entering and debugging a knowl-
edge base, viz., the rules and the object-attribute structures on which they
operate. The level at which the dialogue between system and expert takes
place is an important consideration for speed and efficiency of acquisition.



The System-Building Environment 307

IF: Composition = (LISTOF METALS) and
Error < 5 and
Nd-stress > .5 and
Cycles > 10000

THEN: Ss-stress = fatigue

FIGURE 15-2 Example of ARL format for SACON’s Rule 50.

The knowledge base must eventually reside in the internal LISP format
that the system manipulates to run the consultation and to answer ques-
tions. At the very basic level, one could imagine a programmer using the
LISP editor to create the necessary data structures totally by hand;2 here
the entire translation from the expert’s conceptual rule to LISP data struc-
tures is performed by the programmer. At the other extreme, the expert
would enter rules in English, with the entire burden of understanding
placed on the program.

The actual means used in EMYCIN is at a point between these ex-
tremes. Entering rules at the base LISP level is too error-prone, and re-
quires greater facility with LISP on the part of the system designer than
is desirable. On the other hand, understanding English rules is far too
difficult for a program, especially in a new domain where the vocabulary
has not even been identified and organized for the program’s use. (Just
recognizing new parameters in free English text is a major obstacle.3) EMY-
CIN instead provides a terse, stylized, but easily understood, language for
writing rules and a high-level knowledge base editor for the knowledge
structures in the system. The knowledge base editor performs extensive
checks to catch common input errors, such as misspellings, and handles all
necessary bookkeeping chores. This allows the system builder to try out
new ideas quickly and thereby to get some idea of the feasibility of any
particular formulation of the domain knowledge into rules.

15.3.1 Entering Rules

The Abbreviated Rule Language (ARL) constitutes an intermediate form
between English and pure LISE ARL is a simplified ALGOL-like language
that uses the names of the parameters and their values as operands; the
operators correspond to EMYCIN predicates. For example, SACON’s Rule
50 could have been entered or printed as shown in Figure 15-2.

ARL resembles a shorthand form derived from an ad hoc notation that
we have seen several of our domain experts use to sketch out sets of rules.

2This is the way the extensive knowledge base for the initial MYCIN system was originally
created.

3The task of building an assistant for designers of new EMYCIN systems is the subject of
current research by James Bennett (Bennett, 1983). The name of the program is ROGET.



308 EMYCIN: A Knowledge Engineer’s Tool

The parameter names are simply the labels that the expert uses in defining
the parameters of the domain. Thus they are familiar to the expert. The
conciseness of ARL makes it much easier to enter than English or LISP,
which is an important consideration when entering a large body of rules.

Rule Checking

As each rule is entered or edited, it is checked for syntactic validity to catch
common input errors. By syntactic, we mean issues of rule form--whether
terms are spelled correctly, values are legal for the parameters with which
they are associated, etc.--rather than the actual information content (i.e.,
semantic considerations as to whether the rule "makes sense"). Performing
the syntactic check at acquisition time reduces the likelihood that the con-
sultation program will fail due to "obvious" errors, thus freeing the expert
to concentrate on debugging logical errors and omissions. These issues are
also discussed in Chapter 8.

EMYCIN’s purely syntactic check is made by comparing each clause
with the corresponding function template and seeing that, for example,
each PARM slot is filled by a valid parameter and that its VALUE slot holds
a legal value for the parameter. If an unknown parameter is found, the
checker tries to correct it with the Interlisp spelling corrector, using a
spelling list of all parameters in the system. If that fails, it asks if this is a
new (previously unmentioned) parameter. If" so, it defines the new param-
eter and, in a brief diversion, prompts the system builder to describe it.
Similar action is also taken if an illegal value for a parameter is found.

A limited semantic check is also performed: each new or changed rule
is compared with any existing rules that conclude about the same param-
eter to make sure it does not directly contradict or subsume any of them.
A contradiction occurs when two rules with the same set of premise clauses
make conflicting conclusions (contradictory values or CF’s for the same
parameter); subsumption occurs when one rule’s premise is a subset of"
another’s, so that the first rule succeeds whenever the second one does (i.e.,
the second rule is more specific), and both conclude about the same values.
In either case, the interaction is reported to the expert, who may then
examine or edit any of the offending rules.

15.3.2 Describing Parameters

Information characterizing the parameters and contexts of the domain is
stored as properties of each context or parameter being described. When a
new entity is defined, the acquisition routines automatically prompt for the
properties that are always needed (e.g., EXPECT, the list of values expected
for this parameter); the designer may also enter optional properties (those



The System-Building Environment 309

needed to support special EMYCIN features). The properties are all
checked for validity, in a fashion similar to that employed by the rule
checker.

15.3.3 System Maintenance

While the system designer builds up the domain knowledge base as de-
scribed above, EMYCIN automatically keeps track of the changes that have
been made (new or changed rules, parameters, etc.). The accumulated
changes can be saved on a file by the system builder either explicitly with
a simple command or automatically by the system every n changes (the
frequency of automatic saving can be set by the system builder). When
EMYCIN is started in a subsequent session, the system looks for this file
of changes and loads it in to restore the knowledge base to its previous
state.

15.3.4 Human Engineering

Although the discussion so far has concentrated on the acquisition of the
knowledge base, it is also important that the resulting consultation program
be pleasing in appearance to the user. EMYCIN’s existing human-engi-
neering features relieve the system builder of many of the tedious cosmetic
concerns of producing a usable program. Since the main mode of inter-
action between the consultation program and the client is in the program’s
questions and explanations, most of the features concentrate on making
that interface as comfortable as possible. A main feature in this category
that has already been described is the explanation program--the client can
readily find out why a question is being asked, or how the program arrived
at its conclusions. The designer can also control, by optionally specifying
the PROMPT property for each parameter that is asked for, the manner
in which questions are phrased. More detail can be specified, for example,
than would appear in a simple prompt generated by the system from the
parameter’s translation.

EMYCIN supplies a uniform input facility that allows the normal in-
put-editing functions---character, word, and line deletions--and on display
terminals allows more elegant editing capabilities (insertion or deletion in
the middle of the line, for example) in the style of screen-oriented text
editors. It performs spelling correction and TENEX-style completion4

from a list of possible answers; most commonly this list is the list of legal

4After the user types ESCAPE or ALTMODE, EMYCIN fills out the rest of the phrase if the
part the user has typed is mmmbiguous. For example, when EMYCIN expects the name of
an organism, PSEU is unambiguous for PSEUDOMONAS-AERUGINOSA. Thus the auto-
matic completion of input can save considerable effort and frustration.



310 EMYCIN: A Knowledge Engineer’s Tool

values for the parameter being asked about, as supplied by the system
designer.

In most places where EMYCIN prompts for input, the client may type
a question mark to obtain help concerning the options available. When the
program asks for the value of a parameter, EMYCIN can provide simple
help by listing the legal answers to the question. The system designer can
also include more substantial help by giving rephrasings of or elaborations
on the original question; these are simply entered via the data base editor
as an additional property of the parameter in question. This capability
provides for both streamlined questions for experienced clients and more
detailed explanations of what is being requested for those who are new to
the consultation program.

15.3.5 Debugging the Knowledge Base

There is more to building a knowledge base than just entering rules and
associated data structures. Any errors or omissions in the initial knowledge
base must be corrected in the debugging process. In EMYCIN the principal
method of debugging is to run sample consultations; i.e., the expert plays
the role of a client seeking advice from the system and checks that the
correct conclusions are made. As the expert discovers errors, he or she
uses the knowledge acquisition facilities described above to modify existing
rules or add new ones.

Although the explanation program was designed to allow the consul-
tation user to view the program’s reasoning, it is also a helpful high-level
debugging aid for the system designer. Without having to resort to LISP-
level manipulations, it is possible to examine any inferences that were
made, find out why others failed, and thereby locate errors or omissions
in the knowledge base. The TEIRESIAS program developed the WHY/
HOW capability used in EMYCIN for this very task (see Chapter 9).

EMYCIN provides a debugger based on a portion of the TEIRESIAS
program. The debugger actively guides the expert through the program’s
reasoning chain and locates faulty (or missing) rules. It starts with a con-
clusion that the expert has indicated is incorrect and follows the inference
chain back to locate the error.

The rule interpreter also has a debugging mode, in which it prints out
assorted information about what it is doing: which rules it tries, which ones
succeed (and what conclusions they make), which ones fail (and for what
reason), etc. If the printout indicates that a rule succeeded that should
have failed, or vice versa, the expert can interrupt immediately, rather than
waiting for the end of the consultation to do the more formal TEIRESIAS-
style review.

In either case, once the problem is corrected, the expert can then
restart and try again, with the consultation automatically replayed using
the new or modified rules.



The System-Building Environment 311

Case Library

EMYCIN has facilities for maintaining a library of sample cases. These can
be used for testing a complete system, or for debugging a growing one.
The answers given by the consultation user to all the questions asked dur-
ing the consultation are simply stored away, indexed by their context and
parameter. When a library case is rerun, answers to questions that were
previously asked are looked up and automatically supplied; any new ques-
tions resulting from changes in the rule base are asked in the normal
fashion. This makes it easy to check the performance of a new set of rules
on a "standard" case. It is especially useful during an intensive debugging
session, since the expert can make changes to the knowledge base and,
with a minimum of extra typing, test those changes---effectively reducing
the "turnaround time" between modifying a rule and receiving consulta-
tion feedback.

The BATCH Program

A problem common to most large systems is that new knowledge entered
to fix one set of problems often introduces new bugs, affecting cases that
once ran successfully. To simplify the task of keeping the knowledge base
consistent with cases that are known to be correctly solved, EMYCIN’s
BATCH program permits the system designer to run any or all cases in
the library in background mode. BATCH reports the occurrence of any
changes in the results of the consultation and invokes the QA Module to
explain why the changes occurred. Of course, the system builder must first
indicate to the system which parameters represent the results or the most
important intermediate steps by which the correctness of the consultation
is to be judged. The use of the BATCH program could be viewed as a
form of additional semantic checking to supplement the checking routinely
performed at the time of rule acquisition.

15.3.6 The Rule Compiler

To improve efficiency in a running consultation program, EMYCIN pro-
vides a rule compiler that transforms the system’s production rules into a
decision tree, eliminating the redundant computation inherent in a rule
interpreter. The rule compiler then compiles the resulting tree into ma-
chine code. The consultation program can thereby use an efficient deduc-
tive mechanism for running the actual consultation, while the flexible rule
format remains available for acquisition, explanation, and debugging. For
details about the rule compiler see van Melle (1980).



312 EMYCIN: A Knowledge Engineer’s Tool

15.4 Applications

Several consultation systems have been written using EMYCIN. The orig-
inal MYCIN program provides advice on diagnosis and therapy for infec-
tious diseases. MYCIN is now implemented in EMYCIN, but its knowledge
base was largely constructed before EMYCIN was developed as a separate
system. SACON and CLOT (described in Chapter 16), PUFF (Aikins 
al., 1983), HEADMED (Heiser et al., 1978), LITHO (Bonnet, 1981), 
(Bennett and Hollander, 1981), BLUEBOX (Mulsant and Servan-
Schreiber, 1983), and several other demonstration systems have been suc-
cessfully built in EMYCIN. All have clearly shown the power of starting
with a well-developed framework and concentrating on the knowledge
base. For example, to bring the SACON program to its present level of
performance, about two person-months of the experts’ time were required
to explicate their task as consultants and to formulate the knowledge base,
and about the same amount of time was required to implement and test
the rules in a preliminary version of EMYCIN. CLOT was constructed as
a joint effort by an experienced EMYCIN programmer and a collaborating
medical student. Following approximately ten hours of discussion about
the contents of the knowledge base, they entered and debugged in another
ten hours a preliminary knowledge base of some 60 rules using EMYCIN.
Both knowledge bases would need considerable refinement before the pro-
grams would be ready for general use. The important point, however, is
that starting with a framework like EMYCIN allows system builders to
focus quickly on the expertise necessary for high performance because the
underlying framework is ready to accept it.

15,5 Range of Applicability

EMYCIN is designed to help build and run programs that provide con-
sultative advice. The resulting consultation system takes as input a body of
measurements or other iniormation pertinent to a case and produces as
output some form of recommendation or analysis of the case. The frame-
work seems well suited for many diagnostic or analytic problems, notably
some classes of fault diagnosis, where several input measurements (symp-
toms, laboratory tests) are available and the solution space of possible di-
agnoses can be enumerated. It is less well suited for "tormation" problems,
where the task is to piece together existing structures according to specified
constraints to generate a solution.

EMYCIN was not designed to be a general-purpose representation
language. It is thus wholly unsuited for some problems. The limitations



Range of Applicability 313

derive largely from the fact that EMYCIN has chosen one basic, readily
understood representation for the knowledge in a domain: production
rules that are applied by a backward-chaining control structure and that
operate on data in the form of associative triples. The representation, at
least as implemented in EMYCIN, is unsuitable for problems of constraint
satisfaction, or those requiring iterative techniques.5 Among other classes
of problems that EMYCIN does not attempt to handle are simulation tasks
and tasks involving planning with stepwise refinement. One useful heuris-
tic in thinking about the suitability of EMYCIN for a problem is that the
consultation system should work with a "snapshot" of information about a
case. Good advice should not depend on analyzing a continued stream of
data over a time interval.

Even those domains that have been successfully implemented have
demonstrated some of the inadequacies of EMYCIN. In addition to rep-
resentational difficulties, other problems noted have been the lack of user
control over the consultation dialogue (e.g., the order of questions) and
the amount of’ time a user must spend supplying information. These lim-
itations are discussed further in subsequent chapters.

5The VM program (Chapter 22), however, has shown that production rules can be used 
provide advice ill a dynamic setting where iterative monitoring is required. Greatly influenced
by EMYCIN design issues, VM deals with the management of patients receiving assisted
ventilation after cardiac surgery.




