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In the mid-1970s, when Gorry left M.I. T. to go to Baylor College of 
Medicine, Peter Szolovits took over as head of the Clinical Decision-Making 
Group at Project MAC (now known as the Laboratory for Computer Sci
ence). He renewed ties with the collaborators at Tufts University with whom 
Gorry had previously worked (Pauker, Schwartz, and Kassirer). The fol
lowing chapter is an early result of those developing ties. It was written for 
a special issue of Artificial Intelligence that dealt solely with applications 
of AI in biomedicine (Sridharan, 1978). In the article Szolovits and Pauker 
review the lessons of the major four AIM programs of the early 1970s. 

The review begins by noting that medical decision making can be viewed 
along a spectrum, with categorical (or deterministic) reasoning at one ex
treme and probabilistic (or evidential) reasoning at the other. The authors 
discuss classical flow charts as the prototype of categorical reasoning and 
decision analysis as the prototype of probabilistic reasoning. Within that 
context they compare MYCIN, PIP, CASNET, and INTERNIST-the 
four systems described in Chapters 5 through 8. They note that, although 
all four systems can exhibit impressive expertlike behavior, none of them is 
capable of truly expert reasoning. They argue that a program that can 
demonstrate expertise in the area of medical consultation will have to use 
a judicious combination of categorical and probabilistic reasoning-the 
former to establish a sufficiently narrow context and the latter to make 
comparisons among hypotheses and eventually to recommend therapy. We 
include the paper here because it nicely summarizes and integrates the 
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discussions of the systems in the four preceding chapters. By citing the 
limitations of the early systems, this article helped define and clarify some 
of the research issues that evolved later in the decade and are discussed in 
subsequent chapters. 

9 1 Introduction • 

How do practicing physicians make clinical decisions? What techniques can 
we use in the computer to produce programs that exhibit medical exper
tise? Our interest in these questions is motivated by our desire: 

1. to provide (by computer) expert medical consultation to general prac
titioners or paramedical personnel in communities where such consul
tation is normally unavailable; 

2. to come to understand the reasoning processes of expert doctors so that 
we may improve the teaching of their skills to medical students; and 

3. to advance the techniques of artificial intelligence, especially as applied 
to medicine (AIM), to support our other goals. 

In other publications, we have described research by our group on 
programs to take the history of the present illness of a patient with renal 
disease (Pauker and Gorry, 1976; Szolovits and Pauker, 1976) and to advise 
the physician in the administration of the drug digitalis to patients with 
heart disease (Gorry et al., 1978; Silverman, 1975; Swartout, 1977). Here, 
we would like to review the reasoning mechanisms 1 used by our own pro
grams, by other AI programs with medical applications, and, by inference, 
by physicians. 

9.2 Categorical and Probabilistic Decisions 

Most decisions made in medical practice are straightforward. Whether the 
physician is taking a history of a patient's illness, performing a routine 
physical examination, or ordering a standard battery of laboratory tests, 
he or she makes few real decisions. To a large extent his or her expertise 

lin this discussion, we take reasoning to be synonymous with decision making. Although the 
former is a broader term, we are specifically concerned with that aspect of reasoning that 
yields medical decisions. An earlier review of work in this area was made by Pople et al. 
(1975). 
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consists of mastery of the appropriate set of routines with which he or she 
responds to typical clinical situations. 

This view is corroborated, in part, by the observed differences between 
the diagnostic approach of a medical student or newly minted doctor and 
that of a practicing expert. The novice struggles "from first principles" 
initially to propose plausible theories and then to rule out unlikely ones, 
whereas the expert simply recognizes the situation and knows the appro
priate response. We might say that the expert's knowledge is compiled 
(Rubin, 1975; Sussman, 1973). Similar differences have even been noted 
among expert consultants in different specialties when they are presented 
the same case, and even between the performance of the same consultant 
on cases within compared to cases outside his or her specialty. The expert 
doctor dealing with a case within his or her own specialty approaches the 
case parsimoniously; the expert less familiar with the case resorts to the 
more general diagnostic style associated with the nonexpert (Miller, 1975). 

An important characteristic of expert decision making, then, is the use 
of an appropriate set of routines or rules that apply to the great majority 
of clinical situations. We shall identify this as categorical reasoning.'2 A cat
egorical medical judgment is one made without significant reservations: if 
the patient'S serum sodium is less than 110 mEq.!l., administer sodium 
supplements; if the patient complains of pain on urination, obtain a urine 
culture and consider the possibility of a urinary tract infection. These rules, 
as applied by the physician, are not absolutely deterministic. Although their 
selection and use do not involve deep reasoning, the doctor may withhold 
his or her full commitment from conclusions reached by even such cate
gorical rules. The doctor thereby establishes the flexibility to modify his or 
her conclusions and rethink the problem if later difficulties arise. 

A categorical decision typically depends on a relatively few facts; its 
appropriateness is easy to judge, and its result is unambiguous. A categor
ical decision is simple to make, and the rule that forms its basis is usually 
simple to desc:ribe (although its validity may be complicated to justify). 
Physicians most often work with categorical decisions, and, to whatever 
extent possible, computer experts should do the same. 

Unfortunately, not every decision can be categorical. No simple rule 
exists for deciding whether to perform a bone marrow biopsy or when to 
discharge a patient from the cardiac intensive care unit. Those decisions 
must be made by carefully weighing all the evidence. Although we know 
that doctors do so, we do not understand just how they weigh the evidence 
that favors and that opposes various hypotheses or courses of action; this 
is an important unsolved problem for both AI and cognitive psychology 
(Newell and Simon, 1972; Tversky and Kahneman, 1974). 

2Webster's defines categorical as "unqualified; unconditional; absolute; positive; direct; 
explicit; ... " 
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A number of formal schemes for the weighing of evidence are used, 
and we shall concentrate on one of them, the probabilistic, to contrast with 
the categorical mode of reasoning3 discussed above. We do not believe or 
suggest that formal probabilistic schemes are naturally used in decision 
making by physicians untrained in the use of such schemes. Indeed, there 
is convincing evidence that people are very poor at prob~bilistic reasoning 
(Tversky and Kahneman, 1974). Yet we believe that, with appropriate lim
itations as discussed below, probabilistic reasoning can be an appropriate 
component of a computerized medical decision-making system, especially 
for the difficult decisions for which categorical reasoning is inappropriate.4 

In this paper we examine prototypical categorical and probabilistic 
reasoning systems, their limitations, and their successful applications, and 
then describe and analyze the reasoning mechanisms of some current AIM 
programs in terms of these schemes. We conclude with some comments 
and speculations on the requirements for reasoning mechanisms in future 
AIM programs. 

9.2.1 Purely Categorical Decision Making-The Flow 
Chart 

Categorical reasoning is exemplified by the simplest flow chart programs 
for guiding frequent decisions based on a well-accepted rationale. The flow 
chart is a finite state acceptor in which every nonterminal node asks a 
question whose possible answers are the labels of the arcs leaving that node. 
The machine has a unique initial state corresponding to initial contact with 
the user and a number of possible terminal states, each labeled by an 
outcome-a diagnosis, patient referral, selected therapy-relevant in its 
domain of application. 5 Every answer to every question is decisive; the 
formalism is simple and attractive. 

30ther potentially appropriate schemes include the theory of belieffunctions (Shafer, 1976) 
and the application of fuzzy set theory (Gaines, 1976; Zadeh, 1965). All share the characteristic 
that arithmetic computations are performed to combine separate beliefs or implications to 
determine their joint effect. We are not convinced of the uniform superiority of any of these 
formalisms. Because we are most familiar with the probabilistic scheme, we have chosen to 
examine it in detail. 

4 Although our approach to the construction of expert medical systems has been, in general, 
to follow the way we think expert physicians reason, the known deficiencies in people's abilities 
to make correct probabilistic inferences suggest that this is one area in which the computer 
consultant could provide a truly new service to medicine. However, it is not universally ac
cepted in medicine that probabilistic techniques are a valid way to make clinical decisions 
(Feinstein, 1977b). 

5In some flow chart schemes, the structure of the acceptor is a tree. In that case, every terminal 
node can be reached only by a unique path. In other flow charts, the acceptor is augmented 
to retain information collected during questioning (e.g., in history-taking systems). Even in 
those systems, it is uncommon for a piece of information to be used to select a branch in the 
flow chart in any place except where it is determined. Thus that augmentation does not 
provide the program with any additional state information. 
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Perhaps the most successful use of categorical decision-making pro
grams is in patient-referral triage.6 Nurse-practitioners using standardized 
information-gathering and decision-making protocols can effectively han
dle routine orders for noninvasive laboratory tests and the scheduling of 
emergency or routine vis.its with a doctor. Such a system is now used in 
the walk-in clinic at the Beth Israel Hospital in Boston (Perlman et aI., 
1974), actually employing pen and printed forms rather than computer
generated displays and keyboard input. 

Although every decision in a flow chart is categorical, the development 
of that flow chart may have been based on extensive probabilistic compu
tations. Optimal test selection studies (Peters, 1976) and treat versus no
treat decision models (Pauker and Kassirer, 1975) are examples of proba
bilistic means of generating categorical decision models. 

Whereas patient referral deals with a broad problem domain that may 
require only shallow knowledge, the problem of providing the physician 
with advice about the administration of digitalis requires a great deal of 
knowledge about a narrow medical domain. That domain is, in fact, suf
ficiently well understood at the clinical (although not the physiological) 
level that a reasonably straightforward program has been implemented 
(Silverman, 1975) that gathers relevant clinical parameters about the pa
tient, projects digitalis absorption and excretion rates, adjusts for patient 
sensitivities, and monitors the patient'S clinical condition for signs of ther
apeutic benefit or toxic effect. Although the numerical models used by the 
program are complex, its data-gathering strategy and its heuristic tech
niques for adjusting dosages are simple enough that most parts of the 
program can be explained to the user by simply translating the computer's 
routines into English (Swartout, 1977). This program relies largely on cat
egorical reasoning. 

Why are categorical decisions not sufficient for all of medicine? Be
cause the world is too complex! Although many decisions may be made 
straightforwardly, many others are too difficult to be prescribed in any 
simple manner. When many factors may enter into a decision, when those 
factors may themselves be uncertain, when some factors may become un
important depending on other factors, and when there is a significant cost 
associated with gathering information that may not actually be required 
for the decision, then the rigidity of the flow chart makes it an inappro
priate decision-making instrument. 7 

°Triage is "the medical screening of patients to determine their priority for treatment; the 
separation of a large number of casualties, in military or civilian disaster medical care, into 
three groups: those who cannot be expected to survive even with treatment; those who will 
recover without treatment; and the priority group of those who need treatment in order to 
survive" (Stedman, 1961). 

70f course, one could, in principle, anticipate every complication and degree of uncertainty 
to every answer in the flow chart. If medical diagnosis is a finite process, then a gigantic How 
chart could capture it all. This is, however, the equivalent of playing chess by having precom
puted every possible game; it is probably equally untenable. It suffers similarly from losing 
all of the parsimony of the underlying model that the physician must have, from which the 
giant flow chart would be produced. 
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9.2.2 Purely Probabilistic Decision Making-Bayes' 
Rule and Decision Analysis 

In a typical probabilistic decision problem,s we are to find the true state 
of the world, H T, which is one of a fixed, finite set of exhaustive and 
mutually exclusive hypotheses, H b H 2, ... , H no We start with an initial 
estimate of the probability that each Hi is the true state. We then perform 
a series of tests on the world and use the results to revise the probability 
of each hypothesis. Formally, we have a probability distribution, P, that 
assigns to each Hi a prior probability, PH;' The available tests are T 1, T 2, 

... , Tm , and for each test, Ti, we may obtain one of the results, 
R i, 1, R i,2, ... , Ri,ri' 

Consider the case where we perform a series of the tests. We define 
the test history of the patient after the ith test to be the list of <test, result> 
pairs performed so far: 

Qi = «Tscl(l)' Rscl(I).ksel(l) >, ... , <Tscl(i)' RScl(i).ksel(i) » (1) 

where sel is the test selection function. 
If for every H j and for every possible testing sequence, Qi' we can 

assess how likely we would be to observe Qi in the situation where H j were 
known to be the true state, then we may apply Bayes' Rule to estimate, 
after any possible test history, the likelihood that Hi is H T . In other words, 
if we know the conditional probability of any test history given any hypoth
esis, P QilHi' for each j and Qi' then we can apply Bayes' Rule to compute 
the posterior probability distribution over H: 

II 

~ PQiIHk ' PHk 
k=l 

(2) 

A straightforward application of the above methodology would be to 
perform every test for every patient in a fixed order, obtaining Qn' and 
then to use formula (2) to compute the posterior probabilities. Less naive 
applications of the methodology involve sequential diagnosis, in which the 
order of tests selected depends on previous results and in which diagnosis 
may terminate before all tests are performed. In sequential diagnosis, the 
next test to be performed may be selected by an expected information
maximizing function (Gorry et aI., 1973) or a classical decision analysis that 
maximizes expected utility. The diagnostic process may terminate when 
the likelihood of the leading hypothesis exceeds some threshold9 or when 

SHere we follow Garry (1967). This is the Bayesian approach to probabilistic decision prob
lems. 

9Sometimes, it is the ratio of the likelihood of the leading hypothesis to that of the next 
hypothesis that must exceed a threshold. 
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the expected cost of obtaining further information exceeds the expected 
cost of misdiagnosis due to missing those further data. Each of these tech
niques has been applied in diagnosis. 

The failure of the pure probabilistic decision-making schemes lies in 
their voracious demand for data. Consider the size of the data base that 
would be needed for a direct implementation of the Bayesian methodology 
described above. In performing i of m possible tests, we can choose mPi 

(= m!/(m - i)!) possible test sequences. If every test has r possible results, 
then there will be ri mPi possible test histories after i tests. If we want to 
know the probability distribution over the Hi after each test (to help to 
select the next one), then we need to sum over test histories of every length 
and to multiply by the number of hypotheses, n, to get a total of 

m 

n' I r i • mPi 
i=I 

(3) 

conditional probabilities. For even a relatively small problem-e.g., n = 10 
hypotheses, m = 5 binary tests (r = 2)-the analysis requires 63,300 con
ditional probabilities. 10 

Although the methodology described above is a complete view of med
ical diagnosis, it is certainly not an efficient one. To improve the scheme's 
efficiency, researchers typically make a series of assumptions about the 
problem domain that permit the use of a more parsimonious version of 
this decision method. First, it is usually assumed that two tests will yield 
the same results if we interchange the order in which they are performed. 1 1 

That assumption reduces the number of conditional probabilities needed 
to 

m 

n' I r i • mCi 
i= 1 

n . «(1 + r)m - 1) 

(2,420 in our example), which is still unwieldy. 

(4) 

A second assumption often made is that test results are conditionally 
independent-i.e., given that some hypothesis is the true state of the world, 
the probability of observing result Ri,k for test Ti does not depend on what 
results have been obtained for any other test. This assumption allows all 

lOWe are actually underestimating the amount of data required for such an analysis. In 
addition to the conditional probabilities, we also need other values to construct an optimal 
test-selection function. For example, we might use the costs of performing each test (possibly 
different after each different test history) and the costs and benefits of each possible treat
ment. 
II Although this seems very reasonable, it is not strictly true. The effect of one test may be to 
interfere with a later one. For example, the upper GI series can interfere with interpretation 
of a subsequent intravenous pyelogram (IVP). The situation is even more complex since the 
effect of the former test on the latter often depends on the time that elapses between them. 
Even so, the assumption is so useful that it is worth making. 
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information from previous tests to be summarized in the revised proba
bility distribution after the ith test, and the data requirements are reduced 
to approximately m . n . r conditional probabilities (100 in our example), 
which is reasonable for some applications (Flehinger and Engle, 1975). 

Unfortunately, three serious problems arise with the above scheme and 
its simplifications. The assumption of conditional independence is usually 
false, and the basic premises of the applicability of Bayes' Rule, that the 
set of hypotheses is exhaustive and mutually exclusive, are often violated. 
These may all lead to diagnostic conclusions that are wrong. 

In a small study of the diagnosis of left-sided valvular heart disease, 
we have found that assuming conditional independence between obser
vations of systolic and diastolic heart murmurs leads (not surprisingly) to 
erroneously reversed conclusions from those obtained by a proper analysis. 
To the extent that anatomical and physiological mechanisms tie together 
many of the observations that we can make of the patient's condition and 
to the extent that our probabilistic models are incapable of capturing those 
ties, simplifications in the computational model will lead to errors of di
agnosIs. 

A similar error is introduced when conditional probabilities involving 
the negation of hypotheses are used. PRI-H, being the probability of a test 
result R given that hypothesis H is not the true state of the world, cannot 
be assessed without knowing the actual probability distribution over the 
other hypotheses (unless, of course, there is only one other hypothesis). In 
fact, in our formalism, 

(5) 

which obviously depends on the probability distribution over the hy
potheses. Even if we make the usual assumption of conditional indepen
dence, the practice of considering PRI-Hi to be a constant is unjustified and 
leads to further errors. Formalisms that employ a constant likelihood ratio 
implicitly commit this error, often without recognizing it (Duda et aI., 1976; 
Flehinger and Engle, 1975). The likelihood ratio is defined as 
PRIHi /PRI-Hi. Assuming conditional independence of the test results guar
antees only that the numerator is constant, while, in general, the denom
inator will vary according to formula (5) as new results alter the probability 
distribution over the hypotheses. Using a constant likelihood ratio evalu
ates the current result in the context of the a priori probabilities, wrongly 
ignoring the impact of all of the evidence gathered up to that point. 

A far more serious objection to the use of pure probabilistic decision 
making is that in most clinical situations the hypotheses under considera
tion are neither exhaustive nor mutually exclusive. If we perform a Bayes
ian calculation in the absence of exhaustiveness within the set of hy
potheses, we will arrive at improperly normalized posterior probabilities. 
Their use in assessing the relative likelihoods of our possible hypotheses 
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is appropriate, but we may not rest absolute prognostic judgments or com
pute expected values on the basis of such calculations. 

The absence of mutual exclusivity is a more serious flaw in this meth
odology. Doctors find it useful to describe the clinical situation of a patient 
in terms of abstractions of disorders. When a patient is described as having 
acute poststreptococcal glomerulonephritis (AGN), for example, no one 
means that this patient exhibits every symptom of the disease as described 
in a textbook or that every component of the disease and its typical accom
paniments is present. Having accepted such a description of the patient 
with AGN, diagnosis may then turn to consideration of whether such com
mon (but not necessary) complications as acute renal failure and hyper
tension are present as well. Mapping this process into the view imposed by 
classical probabilistic methods requires the creation of independent hy
potheses for every possible combination of diseases. That technique leads 
to a combinatorial explosion in the data collection requirements of the 
system and at the same time destroys the underlying view the practicing 
physician takes toward the patient. 

Because of the distortions that the pure probabilistic scheme imposes 
on the problem and because of the enormous data requirements it implies, 
it tends to be used successfully only in small, well-constrained problem 
domains. 

9.3 Reasoning in Current AIM Programs 

Medical judgment, by the physician and by computer programs, must be 
based on both categorical and probabilistic reasoning. The focus of re
search in applying artificial intelligence techniques to medicine is to find 
appropriate ways to combine these forms of reasoning to create competent 
programs that exhibit medical expertise. In this section, we will outline in 
brief the central reasoning strategy of four major AIM programs and com
pare their methods to the two "pure cases" presented aoove. 

9.3.1 The Present Illness Program 

Perhaps the best way to explain the reasoning of our program is to describe 
the data that are available to it. The Present Illness Program (PIP) (Szolovits 
and Pauker, 1976) (also see Chapter 6) can deal with a large set of possible 
findings and a separate set of hypotheses. Findings are facts about the patient 
that are reported to the program by its user. Hypotheses represent the 
program's conjecture that the patient is suffering from a disease or man
ifesting a clinical or physiological state. Associated with hypotheses are sets 
of prototypical findings that can either support or refute the hypothesis. 



Relation to Findings 

TRIGGERS 
FINDINGS 

Logical Decision Criteria 

IS-SUFFICIENT 
MUST-HAVE 
MUST-NOT-HAVE 
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<findings> 
<findings> 

<findings> 
<findings> 
<findings> 

Complementary Relation to Other Hypotheses 

CAUSED-BY <hypotheses> 
CAUSE-OF <hypotheses> 
COMPLICATED-BY <hypotheses> 
COMPLICATION-OF <hypotheses> 
ASSOCIATED-WITH <hypotheses> 

Competing Relation to Other Hypotheses 

DIFFERENTIAL-DIAGNOSIS 
«condition 1 > <hypotheses» ... «condition k> <hypotheses» 

Numerical Likelihood Estimator 

SCORE 
((<condition I,I><score 1,1» ... «condition I,n! > <score I,n! ») 

((<condition m,I> <score m,I» ... <condition m,nm > <score m,n m ») 

FIGURE 9-1 Structure of a hypothesis frame in PIP. 

Findings reported by the user are matched against these prototypical find
ings and, if a match occurs,12 PIP's belief in the hypothesis is reevaluated. 
Figure 9-1 shows the structure of a hypothesis in PIP. 

Presentation 

Both TRIGGERS and FINDINGS are often associated with the hypothet.; 
ical disorder. If a reported finding matches one of the triggers of a hy
pothesis, that hypothesis is immediately activated. If it matches a nontrigger 

!2The details of this matching process are not relevant to the questions addressed here and 
will not be discussed. The prototype finding can express either the presence or absence of a 
sign, symptom, laboratory test, or historical finding. For example, it is possible to use the 
absence of increased heart muscle mass (which takes months to develop) to argue in favor of 
acute rather than chronic hypertension. In general, many possible findings may match a 
prototype finding pattern. Thus, within each frame, only those aspects of a finding that are 
important to the hypothesis at hand need be mentioned, and any of the category of possible 
findings thus defined will match successfully. 
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finding, its relevance to that hypothesis is only noticed if the hypothesis is 
already under consideration. The logical decision criteria are used by the 
program to make categorical decisions about the likelihood of the patient's 
suffering from the currently considered hypothesis. IS-SUFFICIENT cov
ers the case of pathognomonic findings, in which the presence of a single 
finding is in itself sufficient to confirm the presence of the hypothesized 
disorder; logical combinations (by NOT, AND, and OR) may also be used 
to specify more complex criteria. MUST-HAVE and MUST-NaT-HAVE 
specify necessary conditions, in the absence of which the hypothesis will 
not be accepted as confirmed. 13 

The complementary hypotheses identify other disorders that may be 
necessary in addition to the hypothesis under consideration to account for 
the condition of the patient. 14 The relationship may be known as causal if 
the physiology of the disorders is well understood, may be complicational if 
one disorder is a typical complication of the other, or may be associational 
if the two may be related by some known but incompletely understood 
association. Although all noncomplementary hypotheses are competitors, 
medical practice specifically identifies those that may often be confused
that is the role of the DIFFERENTIAL-DIAGNOSIS relationships in the 
frame. 

The complementary and competing relations to other hypotheses are 
used in controlling the activation of hypotheses. In an anthropomorphic 
analogy, we think of an active hypothesis as corresponding to one about 
which the physician is consciously thinking. Active hypotheses offer the 
possible explanations for the patient's reported condition and are the basis 
from which the program reasons to select its next question. Inactive hy
potheses are all those possible disorders that play no role in the program's 
current computations; they may be inactive either because no findings have 
ever suggested their possibility or because they have been considered and 
rejected by evaluation in light of the available evidence. Semiactive hy
potheses bridge the gap between active and inactive ones and allow us to 
represent hypotheses that are not actively under consideration but that 
may be "in the back of the physician's mind." As mentioned above, if a 
trigger of any hypothesis is reported, that hypothesis is made active. When 
a hypothesis is activated, all of its closely related complementary hypotheses 
are semiactivated. Whereas nontrigger findings of inactive hypotheses do 
not lead to consideration of those hypotheses, any reported finding of a 
semiactive hypothesis causes it to be activated (i.e., each of its findings is 
treated as a trigger). This models the observation that physicians are more 
likely to pay attention to the minor symptoms of a disease related to the 
diagnosis that they are already considering than to the minor symptoms 

13For logical completeness, we could have an IS-SUFFICIENT-NOT-TO-HAVE criterion, 
which would confirm a hypothesis in the absence of some finding, but this is just not useful. 
14Note that we use the word complement in the sense of completion, not as implying negation 
or something missing. This is the sense of the word used in Pople (1975). 



Reasoning in Current AIM Programs 221 

of an unrelated disorder. Each of the complementary hypotheses identifies 
another disorder that may be present along with the one under consid
eration and that is therefore to be semiactivated. The DIFFERENTIAL
DIAGNOSIS relation identifies a set of competing hypotheses that are to 
be semiactivated if the appropriate condition holds. 

We need to assign to every hypothesis some estimate of its likelihood. 
In PIP, that estimate forms one basis for deciding whether the hypothesis 
ought to be confirmed, if the estimate is sufficiently high, or inactivated, if it 
is sufficiently low. Further, PIP bases its questioning strategy in part on the 
likelihood of its leading hypothesis. That likelihood is estimated by com
bining a function that measures the fit of the observed findings to the 
expectations of the hypothesis with a function that is the ratio of the num
ber of findings that are accounted for by the hypothesis to the total number 
of reported findings. These two components of the likelihood estimate are 
called the matching score and the binding score. 

PIP allows us to define clinical and physiological states (not only dis
eases) as hypotheses. Thus it is not necessary to list every symptom of a 
disease with that disease hypothesis; commonly co-occurring symptoms can 
be made symptoms of a clinical state hypothesis, and their relation to the 
disease derives from the causal relation of the disease to the clinical state. 
This is an appropriate structure that is consistent with medical practice. It 
does, however, raise a problem in computing the matching and binding 
scores for a hypothesis. If a finding is accounted for by a clinical state that 
is related to a disease, then the binding score of the disease hypothesis 
should reflect that relation, and its matching score should also reflect that 
the finding has improved the fit of the facts of the case to the hypothesis. 
To effect this behavior, PIP uses a score propagation scheme, described below. 
A similar argument can be made to extend score propagation to disease 
hypotheses as well: if a disease is made more likely by the observation of 
one of its symptoms, causally related diseases should also be seen as more 
likely. 

The numerical likelihood estimator (see Figure 9-1) is used to compute 
the local score part of the matching score. The local score reflects the degree 
to which the facts found support the hypothesis directly. It consists of a 
series of clauses, each of which is evaluated as a LISP COND.15 The local 
score of a hypothesis is the sum of the values of the clauses, normalized 
by the maximum possible total score. Thus it ranges from a maximum of 
1 (complete agreement) downward to arbitrarily large negative numbers 
(complete disagreement). 

15That is, for clause i, first <condition i,l > is evaluated, and if it is true, the value of clause 
i is <score i,l >. If that first condition is false, then each other condition in the clause is 
evaluated in turn, and the value of the clause is the score for the first true condition. Pro
totypical finding patterns in the condition that have not yet been asked about-thus, whose 
truth is not yet known-are treated as false, unless the pattern requests a negative or unknown 
finding. If none of the conditions is true, the value of the clause is zero. 
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PIP now computes the matching score by revising the local score to 
include the effects of propagated information deriving from related hy
potheses. Consider the case when PIP is trying to compute the score for 
the hypothesis, Hi' First we identify all those other hypotheses, H j , that are 
possibly complementary to Hi. 16 PIP then computes the MATCHING
SCORE by adding up the contributions of every scoring clause of Hi and 
each H j and normalizing by the maximum possible total for this virtual 
scoring function. The effect here is to mechanically undo the organization 
imposed by the use of clinical and physiological states, since we could 
achieve a similar effect by merely listing with each hypothesis the exhaus
tive set of symptoms to which it might lead. Figure 9-2 shows, as an ex
ample, the PIP frame for acute glomerulonephritis. 

Discussion 

PIP uses both categorical and probabilistic17 reasoning mechanisms. We 
shall identify the various forms of reasoning that it undertakes and 
whether they are accomplished by categorical or probabilistic means. When 
a finding is reported to PIP, whether as a fact volunteered by the user or 
in response to the program's questions, it tries to characterize fully the 
finding in terms of all the descriptors known to apply to that finding. For 
example, if edema is reported, PIP will try to establish its location, severity, 
temporal pattern, and whether or not it is symmetrical, painful, and ery
thematous. Rather specific rules capture some of the physician's common 
sense: if the question of past proteinuria is raised, PIP can conclude its 
absence if the patient passed a military physical examination at that time. 
These inferences are purely categorical. 

The main control over PIP's diagnostic behavior resides in the list of 
active and semiactive hypotheses. Recall that only these hypotheses are 
"under consideration"-only they are evaluated or used to select the pro-

16 Hj may be directly linked as a complementary relation to Hi' or it may be linked by a causal 
path going through some other hypotheses. In the latter case, we insist that the flow of 
causality along such a linking path be unidirectional, for we do not want, for example, two 
independent causes of some disease to reinforce each other's likelihood merely by being 
possible causes of the same disorder. We also compute a LINK-STRENGTH between the 
hypotheses, which is the product of each LINK-STRENGTH along the component links. 
Those component link strengths are identified in the data base and reflect the strength of 
association represented by the links. 
17 As should be clear from the above discussion, we do not think of the score computations 
as representing a true probability (either objective or subjective). We have sometimes tried to 

think of our scores as log-transformed probabilities, but the analogy is weak. Rather, we must 
think of them as an arbitrary numeric mechanism for combining information, somewhat 
analogous to the static evaluation of a board position in a chess-playing program. It is useful, 
however, to contrast the scoring computations with a correct probabilistic formulation, be
cause that analogy suggests an explanation for various deficiencies of the scoring scheme 
(Szolovits, 1976). 
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TRIGGERS (EDEMA with LOCATION = FACIAL or PERI-ORBITAL. 
PAINFULNESS = not PAINFUL. 
SYMMETRY = not ASYMMETRICAL. 
ERYTHEMA = not ERYTHEMATOUS) 

FINDINGS (COMPLEMENT with RANGE = LOW). (MALAISE). (WEAKNESS). 
(ANOREXIA). (EDEMA with SEVERITY = not MASSIVE). 
(PATIENT with AGE = CHILD or YOUNG. SEX = MALE) 

CAUSED-BY (STREPTOCOCCAL-INFECTION in RECENT-PAST) 
CAUSE-OF SODIUM-RETENTION. ACUTE-HYPERTENSION. NEPHROTIC-SYNDROME. 

GLOMERULITIS 
COMPLICATED-BY ACUTE-RENAL-FAILURE 
COMPLICATION-OF CELLULITIS 

DIFFERENTIAL-DIAGNOSIS 

(CHRONIC-HYPERTENSION implies CHRONIC-GLOMERULITIS) 
(EDEMA with RECURRENCE = not FIRST-TIME 

implies NEPHROTIC-SYNDROME. CHRONIC-GLOMERULONEPHRITIS. 
FOCAL-GLOMERULONEPHRITIS) 

(ABDOMINAL-PAIN implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with PURPURA = PURPURIC implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with (either LOCATION = MALAR or PHOTOSENSITIVITY = PHOTOSENSITIVE) 

implies SYSTEMIC-LUPUS) 
(JOINT-PAIN implies HENOCH-SCHOENLEIN-PURPURA. SYSTEMIC-LUPUS) 

SCORE 

(((PATIENT with AGE = CHILD or YOUNG) ---> 0.8) 
((PATIENT with AGE = MIDDLE-AGED) ---> - 0.5) 
((PATIENT with AGE = OLD) ---> -1.0)) 

(((COMPLEMENT with RANGE = LOW) ---> 1.0) 
((COMPLEMENT with RANGE = NORMAL or MODERATELY-ELEVATED) ---> -0.7) 
((COMPLEMENT with RANGE = VERY-HIGH) ---> -1.0)) 

(((EDEMA with LOCATION = FACIAL or PERI-ORBITAL. SYMMETRY = not ASYMMETRICAL. 
DAILY-TEMPORAL-PATTERN = WORSE-IN-MORNING. PAINFULNESS = not PAINFUL. 
ERYTHEMA = not ERYTHEMATOUS) ---> 1.0) 

((EDEMA with LOCATION = FACIAL or PERI-ORBITAL. SYMMETRY = not ASYMMETRICAL. 
PAINFULNESS = not PAINFUL. ERYTHEMA = not ERYTHEMATOUS) ---> .5) 

((EDEMA with SEVERITY = not MASSIVE) ---> 0.1) 
((EDEMA with SEVERITY = MASSIVE) ---> - 0.1) 

(((PATIENT with SEX = MALE) ---> 0.3)((PATIENT with SEX = FEMALE) ---> - 0.3)) 
(((ANOREXIA) ---> 0.3) ((ANOREXIA absent) ---> - 0.3)) 
(((WEAKNESS) ---> 0.3) ((WEAKNESS absent) ---> - 0.3)) 

FIGURE 9-2 The PIP hypothesis frame for acute 
glomerulonephritis. 

gram's further questions. The activation (but not the evaluation) of all 
hypotheses is purely categorical. A hypothesis can come up for consider
ation only if one of its prototype findings is matched by a reported finding, 
if a complementary hypothesis is activated, or if a competing hypothesis is 
active and a finding matches a condition among its differential diagnosis 
clauses. 

Once a hypothesis is under consideration, both categorical and prob
abilistic mechanisms exist to decide its merit. In 18 of the 38 fully devel
oped hypothesis frames in the current PIP, we find categorical IS-SUF-
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FICIENT rules to establish the presence of the hypothesized disorder. IS 

By contrast, all frames have a scoring function by which a pseudoproba
bilistic threshold test may confirm hypotheses. Similarly, 9 of the frames 
have necessary conditions that may be used categorically to rule out a 
hypothesis, whereas all may be inactivated if their scores fall below another 
threshold. In our experience, the program performs best when presented 
with cases decided on categorical grounds. Too often, small variations in 
a borderline clinical case can push a score just above or just below a thresh
old and affect the program's conclusions significantly. Of course, in a text
book case, even the probabilistic mechanism will reach the right conclusion 
because the evidence all points in a consistent direction. Perhaps it should 
not disappoint us when the program flounders on tough, indeterminate 
cases where we have neither certain logical criteria nor a consensus from 
the evidence. 

Once the reevaluation of all hypotheses affected by the last finding 
introduced is done, PIP selects an appropriate question to ask the user. 
That selection depends on the probabilistic evaluation of each active hy
pothesis. PIP identifies the highest-scoring active hypothesis, and if one of 
its expected findings has not yet been investigated, that finding is asked 
about. If all its expected findings have already been investigated, then PIP 
pursues expected findings of hypotheses complementary to the leading 
one. 

To its user, PIP's reasoning is discernible from the conclusions it 
reaches and the focus of its questioning. PIP appears unnatural when its 
focus frequently shifts, as the probabilistic evaluator brings first one and 
then another competing hypothesis to the fore. This major deficiency re
lates to the lack of categorical reasoning. Such reasoning might impose a 
longer-term discipline or diagnostic style (Miller, 1975) on the diagnostic 
process. 

In summary, PIP proposes categorically and disposes largely proba
bilis ticall y. 

9.3.2 INTERNIST-The Diagnostic System of Pople 
and Myers 

INTERNIST (Oleson, 1977; Pople, 1975; Pople et aI., 1975) is a comput
erized diagnostic program that emphasizes a very broad coverage of clinical 
diagnostic situations. The INTERNIST data base currently covers approx
imately 80% of the diagnoses of internal medicine (Pople, 1976), and thus 
is the largest of these AIM programs. Although INTERNIST is close to 
its goal of covering most of internal medicine, other problems lie down-

18Currently, PIP contains a total of 69 hypothesis frames, but 31 of them are so skeletal that 
they can never be confirmed. They are there to maintain the appropriate complementary 
relationships, and they anticipate a future extension of our data base. 
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Portal-vei n-occlusion 

Manifestation L F 

Hepatic-vein-wedge-pressure-normal 0 4 
Splenomegaly 4 
Gastro-intestinal-hemorrhage 4 
Varices-esophageal 2 4 
Portal-vein-obstruction-by-radiography S 3 
Anemia 1 3 
Appendicitis-history 2 
Ascites 2 

FIGURE 9-3 A diagnosis and its manifestations in INTER
NIST. L indicates evoking strength; F indicates frequency. 

stream for these researchers, including human-engineering issues centered 
on usability of the program's interface, possibly significant costs of running 
the program and maintaining the data base, introducing some model of 
disease evolution in time, and dealing with treatment, as diagnosis is hard 
to divorce from therapy in any practical sense. 

Presentation 

The INTERNIST data base associates with every possible diagnosis, D i, a 
set of manifestations, {M). A manifestation is a finding, symptom, sign, 
laboratory datum, or another diagnosis that may be associated with the 
diagnosis. For every M j listed under D i , two likelihoods are entered. 
LDiIMj' the evoking strength, is the likelihood that if manifestation Mj is seen 
in a patient, its cause is D i . It is assessed on a scale of 0 to 5, where 5 means 
that the manifestation is pathognomonic for the diagnosis and 0 means 
that it lends virtually no support. F MjlDi' the frequency, is the likelihood that 
a patient with a confirmed diagnosis, Di, would exhibit Mj . 

Although INTERNIST's developers resist identifying these numbers 
as probabilities, F MJiDi is clearly analogous to the conditional probability 
PMJiDi' The evoking strength is like a posterior probability, PDiIMj' that in
cludes a population-dependent prior, PDi , that is not explicit in the data 
base. If we were to take such a probabilistic interpretation, all the usual 
complaints about the failure of Bayesian assumptions would be appropri
ate. The INTERNIST scoring function that computes with these numbers 
is, however, in no sense probabilistic, and the rough granularity of the data 
is undoubtedly equally significant. It is reported that small random per
turbations of the frequencies and evoking strengths in the data base do 
not significantly alter the program's behavior. A small example of a diag
nosis, its associated manifestations, and the evoking strengths and fre
quencies connecting them are shown in Figure 9-3 (Pople, 1976). 
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LIVER DISEASE 

HEPATOCELLULAR-DISEASE 

HEPATOCELLULAR-INFECTION 

E 
HEPATITIS-A 

HEPATITIS-B 

INFECTIOUS-MONONUCLEOSIS 

LEPTOSPIROSIS 

TOXIC-HEPTOCELLULAR-DISEASE 

ABNORMAL-IMMUNITY-HEPATOCELLULAR-REACTION 

NEOPLASMS-OF· LIVER 

I HEPATOMA 

• • • 
CHOLEST ATIC·DISEASE 

••• 
• • • 

FIGURE 9-4 A small portion of INTERNIST's diagnosis 
hierarchy. 

INTERNIST also classifies all its diagnoses into a disease hierarchy, a 
small part of which is shown in Figure 9-4 (Oleson, 1977). The use of 
hierarchy is an important mechanism for controlling the proliferation of 
active hypotheses during the diagnostic process because it allows a single 
general diagnosis to stand for all its possible specializations when no dis
criminating information is yet available to choose among them. This oc
curs, however, only when all specializations of the chosen general diagnosis 
have in common the same set of observed manifestations. Because IN
TERN 1ST wants to evaluate general as well as specific diagnoses, it computes 
for each general diagnosis a list of manifestations and their corresponding 
evoking strengths and frequencies. The manifestations for the general di
agnosis are those common to each of its specializations, and the evoking 
strength and frequency of each are, respectively, the maximum evoking 
strength and minimum frequency of that manifestation among the spe
cializations. 

Borrowing the term from PIP, we will call a diagnosis active if at least 
one of its manifestations with a nonzero evoking strength has been ob
served, unless the diagnosis is a general one and must be replaced by its 
specializations (for example, because a manifestation occurring in one but 
not another of the more specific diagnoses has been reported). For each 
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active hypothesis, a score is computed by summing the scaled evoking 
strengths of all its manifestations that have been observed, adding "bonus" 
points for confirmed causally consequent diagnoses, subtracting the sum 
of frequencies of those of its manifestations that are known to be absent, 
and also subtracting a weight of importance for each significant finding that 
is reported to be present but that is not explained by either the diagnosis 
or some other confirmed diagnosis. Thus evocative findings and confirmed 
consequences of a diagnosis count in its favor, while expected findings that 
are known to be absent and reported findings that are unexplained count 
against it. 

Discussion 

Drawing an analogy with PIP, INTERNIST's diagnoses are PIP's hy
potheses, the manifestations are the findings and causally related hy
potheses, and the evoking strengths are like the triggers-they and the 
frequencies play the role of the scoring function. INTERNIST's use of the 
importance measure for unexplained findings is superior to PIP's simple 
fractional binding score. Because the scoring function in PIP is explicit in 
each hypothesis frame, it requires more effort to create but provides a 
more general means of evaluating the significance of present and absent 
findings. Also, because PIP provides some logical criteria for confirming 
or denying a hypothesis, it provides a data base with the option of cate
gorical hypothesis evaluation. 

The lumping together of findings with causally consequent diagnoses, 
both as manifestations, leads INTERNIST to some difficulties. For it, any 
manifestation is either present, absent, or unobserved. This may be ap
propriate for findings, but when imposed on the evaluation of diagnoses, 
ignores the arguably real support of a strongly suspected though not con
firmed causally consequent diagnosis for its antecedent. As Pople has 
pointed out, this effect may prevent INTERNIST from diagnosing a syn
drome of connected hypotheses if no one of them is definitely provable 
even though the circumstantial evidence of their combined high likelihood 
is convincing to a physician. A similar deficiency arises because reported 
findings are explained only by confirmed diagnoses. Again, a strongly sus
pected but not confirmed complementary hypothesis will not be able to 
explain its significant findings, and so the correct diagnosis may have its 
score strongly penalized. As discussed above, PIP addresses these problems 
by dealing more explicitly with complementary disorders and accepting 
that a hypothesis accounts for a finding if one of its active complementary 
hypotheses accounts for it. We will argue below, however, that both of these 
solutions are weakened by not having a sufficiently explicit model of the 
hypothesis they are pursuing. 

The most interesting part of INTERNIST is its focusing mechanism. 
After scoring all its active diagnoses, INTERNIST chooses to concentrate 
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on the highest-ranking diagnosis. It partitions the others into two lists: the 
competing and the complementary diagnoses. A diagnosis is complementary 
to the chosen one if the two, together, account for more findings than 
either alone; otherwise the diagnosis is competing. The complementary 
list is then temporarily set aside, and a questioning strategy (one of RULE
OUT, NARROW, DISCRIMINATE, or PURSUE) is selected, depending 
on the number of high-scoring competitors and whether the information 
to be requested is low or high in cost. The complete scoring, partitioning, 
and strategy-selection processes are repeated after each new fact is re
ported. Confirmation is by numerical threshold. The partitioning heuristic 
is credited by Pople with having a very significant effect on the perfor
mance of the program, focusing its questioning on appropriate alternative 
diagnoses. 

Because its intended coverage of disorders and findings is universal, 
INTERNIST relies on a uniform processing strategy and a simply struc
tured data base. Much of its decision making falls under our probabilistic 
designation. The use of a hierarchic tree of diagnoses and of the rule for 
moving from a general to more specific diagnoses is categorical and cap
tures an important part of a clinician's diagnostic behavior. The selection 
of questioning strategy is also categorical, although, interestingly, it de
pends on a probabilistic computation of the likelihood of each diagnosis. 

9.3.3 CASNET -A Model of Causal Connectives 

In a domain where normal and diseased states are well understood in 
physiological detail, it is sensible to build diagnostic models in which the 
basic hypotheses are much more detailed than the disease-level hypotheses 
of PIP and INTERNIST. Kulikowski, Weiss, and their colleagues have built 
such a system based on the causal modeling of the disease glaucoma. Their 
system is called CASNET, and it is in principle a general tool for building 
causal models with which well-known diseases may be diagnosed and 
treated (Weiss, 1974). 

Presentation 

CASNET defines a causal network of dysfunctional states and a set of tests 
that provide evidence about the likelihood of the existence of those states 
in the patient under consideration. States represent detailed dysfunctions 
of physiology, not complete diseases; thus the determination of disease is 
separated from the question of what, in detail, is going wrong in the pa
tient.-

The network consists of a set of nodes, some of which are designated 
as starting states, meaning that they are etiologically primary, and some as 
final states, meaning that they have no dysfunctional consequences. All 
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causal relationships are represented by a link between two nodes, with a 
link strength that is interpreted as the frequency with which the first node 
causes the second. Starting states are given a prior frequency. No cycles 
are allowed in the network. Almost all nodes are representations of real 
physiological disorders. Although logical combinations of physiological 
states may be represented by a single node (for example, to express joint 
causation), this technique is discouraged. Further, "the resolution of states 
should be maintained only at a level consistent with the decision-making 
goal. A state network can be thought of as a streamlined model of disease 
that unifies several important concepts and guides us in our goal of diag
nosis. It is not meant as a complete model of disease" (Weiss, 1974). 

Two separate probabilistic measures are computed for every state in 
the network. A node's status is an estimate of its likelihood from the results 
of directly relevant tests. The status determines whether a node is confirmed 
or disconfirmed. A node's weight is an essentially independent estimate of its 
likelihood that derives from the strength of causal association between the 
node and its nearest confirmed and disconfirmed relatives. The weight 
computation ignores test results that affect the node's own status but is 
sensitive to results that establish the confirmation status of its causal rela
tives. 

All tests are binary and are entered with an evaluation of the cost of 
each. If a positive or negative test result is reported, a set of links from 
the test to nodes of the network implies the presence or absence, respec
tively, of the corresponding nodes. Each link is labeled with a confidence 
measure for both positive and negative results, separately. A test may rep
resent a simple observation of the patient, or it may be a logical combi
nation of specific results of other tests. Only the results of simple tests are 
directly asked of the user of the program-the others are computed from 
the results of simple tests. 

The status of each node is measured in the same units that are used 
to report the confidence measures of the implications of tests. Every time 
the result of a test is reported, the status of every node to which that test 
is linked is recomputed: if the result of the test has less confidence (i.e., is 
smaller in magnitude) than the status of the node, no change occurs. If 
the test result has greater confidence, the node's status is changed to that 
value. If they are equal, but of opposite sign, the node's status is set to 
zero, and a contradiction is noted for the user. One threshold, T, is defined 
such that if the status of a node is less than - T, the node is denied, and if 
the status exceeds + T, the node is confirmed. 

The use of a maximum-confidence value for status and the ability to 
define a high-confidence test as the conjunction of two lower-confidence 
tests are in the fuzzy set tradition. This approach sidesteps the problem of 
the interpretation of mutually dependent test results, as they arise in a 
Bayesian formulation, by requiring the designer of the data base to define 
explicitly a new test for any combination of tests that jointly support the 
same node. Weiss argues that in his application domain this is perfectly 
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appropriate, because when tests of varying confidence are available, only 
the results of the strongest should be counted (Weiss, 1974). One may 
question, however, whether this approach could be extended to wider med
ical areas, especially where many tests are available but only a consistent 
reading on most of them is enough to confirm a hypothesis. 

Both for selecting a "most informative" test and for interpreting the 
pattern of status values among nodes of the network as a coherent disease 
hypothesis, CASNET defines an acceptable path in the network as a sequence 
of nodes that includes no denied nodes. A forward weight is computed for 
every node in the network, which represents the likelihood of that node 
when considering the degree to which its confirmed causal antecedents 
should cause it. Consider each admissible path that leads to node nj and 
starts either at a starting node or at a closest confirmed node. CASNET 
computes the likelihood of causation along each such path by multiplying 
the link strengths along it (and the prior frequency for a starting state). 
The forward weight, Wi' of node nj is defined to be the sum of the weights 
along each such path. 

An inverse weight, representing the degree to which the presence of a 
node is implied by the presence of its causal consequents, is also com
puted. 19 CASNET then takes the maximum of the forward and inverse 
weights as the total weight, which is interpreted as a frequency measure of 
the degree to which the node is expected to be confirmed or disconfirmed 
from circumstantial causal evidence. Obviously, nodes with a high total 
weight and a status score near zero are excellent candidates for testing, 
since we might expect them to be confirmed. Conversely, nodes with low 
total weight are also candidates for testing, since we expect them to be 
denied. CASNET permits a number of different testing strategies to be 
used, based in part on the expected information implied by the weights 
and in part on the costs of the various tests. 20 

One should interpret the status of various nodes in the network as 
measures of the likelihood of subparts of a coherent disease. Based on the 
notion of the acceptable path, CASNET defines a number of different 
kinds of disease pathways, depending on which starting nodes are accept
able for such a path and on what criteria are used to terminate the path. 
It can compute those paths that are most likely to account for all the confirmed 
nodes in the network, all those that are potential explanations, and those 
that are not contradicted by a denied starting node (called global). Once 
the start of a disease path is selected, its termination criterion determines 
the type of path. An acceptable path that ends on a confirmed node is 
confirmed. An acceptable path ending on an undenied node is possible. A 

19We cannot describe all of the computational mechanisms of CASNET here. An excellent 
presentation of the algorithms and a thorough justification for the particular choices made 
are in Weiss's thesis (1974). 

20 At present, the program is used with a fixed sequence of tests because an attempt is being 
made to gather a large, uniform data base about glaucoma patients. Thus the test selection 
function and this interesting weighting function are not in use (Weiss, 1976). 
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path that ends on a final state, even if it includes denied nodes, is predictive. 
Depending on the intent of the user, any combination of starting and 
termination criteria for a disease path may be selected. For example, the 
most likely starting criterion taken with the confirmed termination crite
rion will yield the "best estimate" diagnosis of the patient's current state. 
Selecting the global starting criterion and the predictive stopping criterion 
produces essentially all pathways through the network. 

The most likely starting nodes are used to establish the probable causal 
mechanisms (the diseases) that account for the patient's difficulties. The 
ends of disease pathways give an estimate of the extent of the diseases. 
Together, these can be used to identify the primary disorder, to select a 
therapy for it, and to make prognostic judgments. 

In a very clever manner, the determination of the effectiveness of 
therapy is handled by application of the same techniques used for diag
nosis. A new causal network is constructed, in which the various therapies 
are the starting states and other nodes represent either complications of 
the treatments themselves or disorders not alleviated by the treatments. 
All of the above techniques are then available to assess whether any con
firmed disorders are left after treatment and, if so, by what causal paths 
they could come about. 

Discussion 

At the level of testing, confirmation, and denial of nodes of the causal 
network, virtually all of CAS NET's reasoning is probabilistic, based on the 
fuzzy set formalism for test interpretation and a probability interpretation 
for propagating causal frequency. The ability to define a hierarchy of tests 
(where higher tests summarize logical combinations of results of lower 
ones) and the simple confidence interpretation of node status provide a 
mechanism in which categorical rules for deciding node status are easily 
embedded. 

The selection of a diagnosis and an associated therapeutic plan de
pends principally on the network designer's categorical understanding of 
the possible causal pathways through the net and on his or her definition 
of just which paths are subsumed by a given disease. In fact, if forward 
and inverse weights were not calculated, the elimination of any causal links 
that are not part of an identified disease path would result in no net effect 
on the operation of the program. 

Weiss emphasizes that perfect accuracy in diagnosis by his program is 
not an unrealistic goal (presumably, without significant cost limitations on 
its testing strategy). This is to be contrasted to statistical classification 
schemes that would likely remain imperfect even with the addition of large 
quantities of new data. In CASNET, this confidence is justified because an 
error in the program's classification of a patient must ultimately indict some 
part of the causal model. In response, it may be necessary to add more 
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tests to help distinguish the erroneous case, or the network may need to 
be disaggregated in selected places to give a more detailed model of some 
aspect of the disease. In the typical statistical approach, where the unit 
hypothesis is the disease, such local refinement is less feasible. 

The glaucoma program works so well because its domain is narrow 
and the pathophysiology is well understood. Especially when compared 
with the domain of all of internal medicine (INTERNIST) or renal disease 
(PIP), the level of detail that is medically known and that it is practical to 
include in the glaucoma program is great. In fact, we speculate that the 
program could be recast as a categorical reasoning program. Given a fixed 
flow chart for test selection, we might consider in turn each of the roughly 
50 starting states. From each, we might imagine a discrimination network 
that traces those diseases that start with that starting node. The discrimi
nation net would branch, based on the crudely quantized confidence mea
sure (status) of each successor node. That same measure could be used to 
determine the end of the disease path and thus the degree of progression 
of the disease and its possible therapies. Of course, such a technique may 
be too rigid to use in a changing environment or may not capture some 
capabilities of the original program (e.g., it could not compute all possible 
causes of some dysfunction). We hasten to mark this as pure speculation, 
but it suggests that perhaps more powerful categorical decision-making 
techniques could equally well solve the glaucoma problem, and thus that 
the probabilistic appearance of the CASNET solution is perhaps unnec
essary. 

A causal model is, nevertheless, attractive. We have seen physicians 
create (occasionally incorrectly) causal explanations for phenomena that 
they associate with diseases even though such a causal model played no 
important role in their interpretation of the phenomena. People seem hap
pier if they understand why something happens than if they merely know 
that, under given circumstances, it does. Causal models for diagnosing 
dysfunction have been implemented for simple physical devices (Rieger, 
1975) and proposed for medicine (Smith, 1978). In both these approaches, 
causality is taken as a categorical, not a probabilistic, connection. Reasoning 
about likelihood is often quantified only in the very fuzzy sense of IM
POSSIBLE, UNLIKELY, POSSIBLE, PROBABLE, and CERTAIN, and 
distinctive rules rather than a uniform numerical computation are used to 
combine data with different degrees of likelihood. 

9.3.4 Production Rules-MYCIN and Inference Nets 

The final AIM program whose reasoning component we shall describe is 
MYCIN, which is being developed to advise physicians and medical stu
dents in the appropriate treatment of infections (Shortliffe and Buchanan, 
1975) (see also Chapter 5). 
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IF: 1) The stain of the organism is gram positive and 
2) The morphology of the organism is coccus and 
3) The growth confirmation of the organism is chains 

THEN: There is suggestive evidence (.7) that the identity of 
the organism is streptococcus 

FIGURE 9-5 A typical MYCIN rule. 

MYCIN's knowledge is expressed principally in a number of independently 
stated rules of deduction, a typical example of which is shown in Figure 
9-5. MYCIN's highest-level goal is to determine if the patient is suffering 
from a significant infection that should be treated, and if he or she is, to 
select the appropriate therapy. It uses a backward-chaining deduction 
scheme in which all applicable rules are tried: if a condition in the IF 
(antecedent) part of a rule is decidable from the data base, that is done; if 
the condition can be asserted by the THEN (consequent) part of some other 
rules, they are applied; otherwise, MYCIN asks the user. Thus the rule of 
Figure 9-5 might be applied in the following chain of reasoning: 

1. To decide if the patient needs to be treated, we must decide if he or 
she has a significant infection. 

2. We must know the likely identity of the infecting organism to decide if 
the infection is significant. 

3. The rule of Figure 9-5 can determine the identity of the organism. 

Because conditions in the rules may include logical disjunctions as well as 
conjunctions, the deduction forms an AND/OR tree. 

When the methodology of MYCIN was applied to the simple domain 
of bicycle troubleshooting, a small set of categorical rules of this type was 
sufficient to give the program some interesting behavior. The complication 
in MYCIN arises from the uncertainty with which a medical rule implies 
its consequences, the applicability of several uncertain rules to suggest the 
same consequence, and the need to apply rules even when their anteced
ents are to some degree uncertain. 

MYCIN associates a certainty factor (CF) with each rule, which is a num
ber between 0 and 1, representing the added degree of belief that the rule 
implies for its consequent. With each fact in the data base is a measure of 
belief (MB) and a measure of disbelief (MD), both numbers between 0 and 1 
that summarize all the positive and negative evidence that has been im
puted for this datum by the application of rules that conclude about the 
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datum. The measures of belief and disbelief are maintained separately for 
each item, and the certainty factor of the fact is their difference. Thus the 
CF of a fact is a number between - 1 and 1. 

Arguing that the rule "A implies B with probability X" should not be 
inverted in the traditional probabilistic sense to entail "A implies not B 
with probability (1 - X)," Shortliffe defines a confirmation formalism for 
computing the certainty of facts (Shortliffe and Buchanan, 1975). In its 
simplest form, it says the following: assume that we are told (perhaps by 
some rule 51) the fact H with certainty MB HiS l' Later, we discover that 
another source of information, 52, tells us H again, this time with certainty 
MBH ls2' Instead of using a maximum, as CASNET would, we would like 
to feel more confident in H after having received two reports in its favor 
than after having received either one by itself. MYCIN's scheme means 
that every new report of the truth of H reduces the difference between 1 
and H's measure of belief by the fraction that is the certainty of the new 
report. For example, if MBH lsl = 0.4 and MB H ls2 = 0.6, then the com
bined result is MBH Isl,S2 = 0.76. This process is defined separately for 
positive and negative reports, and we have 

MBH IS1,S2 0 if MDH Isl,S2 = 1 (6) 

MBH lsl + MBH Is2 (1 - MBH lsl) otherwise 

and 

MDH Isl,S2 0 if MBH Isl,S2 = 1 (7) 

MDH lsl + MDH Is2 (1 - MDH lsl) otherwise 

where 51 and 52 are the two reports. The measures of belief and disbelief 
combine to give a certainty factor for each fact: 

This, then, defines MYCIN's method of summarizing the certainty of a 
hypothesis when the application of several rules has contributed evidence 
for it. 

To compute the measure of belief (or disbelief) contributed by a par
ticular rule, MYCIN multiplies the CF of the rule by the MB (or MD) of 
the rule's antecedent. A fuzzy set strategy of maximizing for OR and min
imizing for AND is adopted to compute the belief measures of the ante
cedent from the belief measures of its components. This approach is pre
sented and justified in Shortliffe and Buchanan (1975) and Shortliffe 
(1976). An alternative formulation of separate measures of belief and 
disbelief is to be found in Shafer (1976). 
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Discussion 

In MYCIN, the question of just what connections exist among different 
facts in the data base is not explicitly addressed. In addition to the rules 
that we have mentioned above, MYCIN also includes a context hierarchy, 
which plays a smaller but still important role in the program's operation. 
For example, the facts that "there are cultures associated with infections" 
and that "cultured organisms are associated with cultures" are embedded 
in no rules, but rather in this additional mechanism. 21 Turning MYCIN 
inside out, that context mechanism could be viewed as the principal or
ganizational facility of the diagnosis program. In such a view, the under
lying reasoning activity is filling in a frame for the patient by directly asking 
for some information (e.g., age and sex) and by instantiating and recur
sively filling in other frames (e.g., cultures and operations). The produc
tions and their associated certainty factors are then seen as a set of pro
cedurally attached heuristics to help fill in those frames. We conjecture that 
this methodology, which underlies the operation of the GUS program 
(Bobrow et aI., 1977), would provide a reasonable alternative way of im
plementing the MYCIN system. 

MYCIN's categorical knowledge is encoded in three ways. First, the 
presence of each rule implicitly establishes a categorical, inferential con
nection between those facts in its consequent and those it uses in its an
tecedent. The MYCIN control structure, which is a nearly purely categor
ical backward-chaining deduction scheme, is based on these relationships. 
Second, the context tree explicitly, defines what objects may exist in MY
CIN's universe of discourse and how they may relate. Such categorical 
information would underlie a GUS-like implementation of MYCIN. Third, 
many other relationships, which record such data as how to ask a question 
and what answers are acceptable, are also categorical in nature. MYCIN's 
probabilistic reasoning resides in its use of the measures of belief and 
disbelief about each fact and the certainty factors associated with each rule. 
Although this probabilistic method has important consequences for the 
assessment of the relative likelihoods of the various infecting organisms 
under consideration, it appears that it affects the program's questioning 
behavior only slightly. Except in the case where a line of reasoning is pur
sued because of the joint effect of several very weak independent infer
ences, which we suspect is rare, the particular numbers used make little 
difference except in the final diagnosis (and thus therapy). We note that 
the context tree that is built for each patient depends for its structure 
mainly on information that is always asked of the patient, such as what 
cultures have been taken, what operative procedures have been performed, 

21 Note that, because of interposed levels of complexity such as the existence of cultures, the 
example "traceback" we presented above of how MYCIN would decide to apply the rule of 
Figure 9-5 is overly simplistic. 
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and what drugs are being used in treatment. Even dramatic changes in the 
probabilistic component of MYCIN's reasoning strategy would not alter 
this behavior. 

MYCIN has also inspired the creation of a more uniform inference 
scheme, in which every potential fact in the data base is viewed as a node 
in a large inferential network. 22 In such a network, the reasoning rules 
form the connections among the fact nodes, and we think of propagating 
some measures of likelihood among the nodes so that the impact of directly 
observable facts may be reflected on the diagnostic consequences of ulti
mate interest. This is the approach taken by Duda, Hart, and Nilsson 
(1976) in their inference net formalism. The propagation scheme used there 
is Bayesian in its heritage, but suffers from the typical distortions (see 
above) that the Bayesian methodology can introduce. 

Of course, it is natural to compare the inference net to the causal net. 
The difference is primarily in the semantic interpretation of what a node 
and a link represent. In CASNET, the node is a dysfunctional state, and 
the link represents causality in the application domain. In the inference 
net, nodes are essentially arbitrary facts about the world, and rules are 
arbitrary implications among those facts. Much of Weiss's reasoning in 
justifying the particular propagation algorithms he has chosen rests on his 
specific interpretation of the network. Because the semantics of the infer
ence net are less dearly (or constantly) defined, we must be more skeptical 
when evaluating the acceptability of the approximations introduced by the 
propagation formulas. 

9.4 Another Look at the Problems of Diagnosis 

Compared to the expert physician, our best AIM programs still have many 
deficiencies. We catalog a few of the more significant ones: 

1. Programs that deal with relatively broad domains, such as INTERNIST 
and PIP, have inadequate criteria for deciding when a diagnosis is com
plete. There is no sense of when the major diagnostic problems have 
been resolved and only the "loose ends" remain: the programs continue 
exploring less and less sensible additional hypotheses until the user tires 
of the consultation. For example, PIP only stops if no active hypotheses 
remain or if every finding of every active hypothesis has been explored 
already. 

22Uniformity is not necessarily an advantage for a reasoning scheme. For example, the par
ticular structures used by MYCIN are cleverly exploited by Davis in building an interesting 
knowledge-acquisition module (Davis, 1976). In a uniform system of representation, it would 
be more difficult for his programs to decide just where new knowledge is to be added. 
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2. Because the initial strategy of the programs is to use every significant 
new finding as a clue to raise the possibility of associated disorders and 
because this strategy remains throughout the programs' operation, new 
hypotheses are continually being activated. Thus, when the program 
asks about an expected finding for one of its leading hypotheses and 
the finding is present, that finding often suggests new hypotheses as 
well, even though it is perfectly consistent with the diagnosis being pur
sued. Obviously, some such sensitivity is necessary or the program 
would remain committed to its first hypothesis, but we now feel that it 
would be preferable if new hypotheses were triggered only by evidence 
that contradicts a current beiief. 

3. Part of the routine developed by clinicians is an appropriate order for 
acquiring information systematically. Computer diagnosticians tend to 
enforce such an order either too strictly (e.g., the flow charts and MY
CIN, which cannot accept out-of-sequence information in any useful 
way) or not at all (e.g., INTERNIST or PIP, where a global computation 
after the report of each fact may, in the worst case, change the program's 
focus to an entirely new topic for each question). 

4. The programs rely on a global likelihood assessment scheme, but they 
use a semantics that is too weak for the states over which they try to 
compute approximate probabilities. For example, none of the programs 
can dynamically distinguish among the aggregate hypotheses 

a. A and B, both together, when in fact A has caused B, 

b. A and B co-occurring but apparently unrelated, and 

c. A or B but not both. 

Yet there are therapeutic and strategic decisions that hinge on just such 
distinctions. For example, it may be sufficient to treat only for A in the 
first case, but not in the second; trying to discriminate between A and 
B makes sense in the third case, but not in the others. PIP and IN
TERNIST might eliminate some of these hypotheses by noting those 
causal or associationallinks that are disallowed by the data base, but in 
no sense are these hypotheses generally distinguishable. MYCIN might 
include some rules that could, for example, reduce the possibility of 
hypothesis c, but it also lacks any mechanism to take up the problems 
of dependence. Although CASNET does allow the proper handling of 
this problem, it must do so by the creation of joint states, which is its 
weakest semantic ability. 

9.4.1 Possible Improvements 

The practice of clinical medicine offers some clues to the proper solution 
of some of these difficulties. Questions of the appropriate termination of 
the diagnostic process and control over the proliferation of hypotheses may 
be resolved by considering two factors. First, the diagnosis needs to be only 
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as precise as is required by the next decision to be taken by the doctor. 
Thus, if all the remaining possible diagnoses are irrelevant or equivalent 
in their implications for therapy or test selection, then nothing is lost by 
postponing their consideration. Bayesian programs that explicitly com pare 
the cost of new information to its expected benefit will achieve this saving 
(Gorry ~t aI., 1973), but none of the programs discussed here includes such 
a computation. 

Second, the simple passage of time, "creative indecision," often pro
vides the best diagnostic clues because the evolution of the disorder in time 
adds a whole new dimension to the other available information. Whereas 
MYCIN, CASNET, and the Digitalis Therapy Advisor all use changes over 
time as diagnostic clues, none of the programs exploits the possibility of 
deferring its own decisions with a deliberate eye to waiting for disease 
evolution. Such a strategy is also applicable on the much shorter time scale 
of the diagnostic session. In taking the present illness, for example, the 
doctor knows that a physical examination and a review of symptoms will 
soon provide additional information. Therefore, consideration of unlikely 
leads and small discrepancies can be deferred, leaving a coherent structure 
of problems to work with at the moment. 

The ability to lay aside information that does not fit well with the 
current hypotheses is also a good mechanism for limiting the rapid shifts 
of focus caused by consideration of newly raised but unrelated hypotheses. 
In addition, however, the programs must have a sense of the orderly proc
ess by which information is normally gathered. The attempts in PIP to 
characterize a finding fully before proceeding and the attempts in IN
TERNIST and CASNET to ask summarizing questions (not described 
here) before launching on a series of similar, detailed questions are at
tempts to reflect such an order. We might, as Miller suggests (1975), go 
much further. We could, for example, incorporate a strategy that says, 
"When investigating a suspected chronic disease, insist on a chronological 
description of all the patient's relevant history." If such a strategy were 
followed, the program would not quickly jump at a "red herring" uncov
ered during the acquisition of those historical data. For example, consider 
a patient with a long history of sickle cell anemia who now complains of 
acute joint pain. Although that complaint would ordinarily raise the issue 
of rheumatoid arthritis, in this case we (and the program) should realize 
that the joint pain is a reasonable consequence of an already known disease 
process and should not evoke an immediate attempt to create elaborate 
additional explanations. Maintaining a richer semantic structure of just 
what the current hypothesis is and allowing that structure to control the 
program's focus of attention should also stabilize the program's behavior. 

Another possible mechanism for controlling the logic of diagnosis is 
suggested by the following example. Consider the earliest stages in the 
diagnosis of chest pain, a symptom of potentially grave consequence. With 
a disaggregated structure of relationships between findings and hy
potheses, chest pain might suggest angina pectoris, aortic stenosis, pneu-
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monia, tuberculosis, pericarditis, cos to-chondritis , depression, hiatus her
nia, pancreatitis, esophagitis, gastric ulcer, fractured rib, pulmonary 
embolism, etc.-a long list of significantly different low-level hypotheses. 
Once those are all active, we must evaluate and compare all of them to 
choose a best hypothesis. On the other hand, we can say that, initially, we 
will only use the finding of chest pain to choose a somewhat specific di
agnostic area for our further focus; specifically, we would like to choose 
one of these generic hypotheses: the pain is due to cardiac, pulmonary, 
gastrointestinal, psychogenic, or muscular-skeletal causes. We ask only the 
age and sex of the patient and three of the most important descriptors of 
the chest pain, its character, provocation, and duration. Obtaining a'rank 
order for the five categories from each descriptor and combining them by 
a very simple arithmetic formula, we get a reasonably robust estimate of 
what is the best diagnostic area to pursue. 

No simple scheme like the one suggested here is, of course, a panacea. 
However, we have been surprised at how effective rather crude heuristic 
techniques can be when they are tailored to a specific problem. To illustrate 
the necessity of that tailoring, it should be pointed out that the same tech
nique appears not to be effective at the next level of diagnosis, for example, 
in sorting out the various possible cardiac causes of chest pain. 

In summary, our analysis of the reasoning mechanisms of current AI 
programs leads us to these conclusions: 

1. If possible, a carefully chosen categorical reasoning mechanism that is 
based on some simple model of the problem domain should be used 
for decision making. Many such mechanisms may interact in a large 
diagnostic system, with each being limited to its small subdomain. Many 
of the intuitively appealing observations made above can 'probably be 
implemented by the use of such techniques. 

2. When complex problems need to be addressed-which treatment 
should be selected, how much of the drug should be given, etc.-then 
causal or probabilistic models are necessary. The essential key to their 
correct use is that they must be applied in a limited problem domain 
where their assumptions can be accepted with confidence. Thus it is the 
role of categorical methods to discover what the central problem is and 
to limit it as strongly as possible; only then are probabilistic techniques 
appropriate for its solution. 

9.4.2 Postscript 

As we interact with our medical colleagues at work, we are sometimes 
amazed by two observations: 

1. They are often extremely reluctant to engage in any numerical com
putation involving the likelihood of a diagnosis or the prognosis for a 
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treatment. Even when official blessing is bestowed upon Bayesian tech
niques, we have seen both experienced and novice physicians acknowl
edge and then ignore them. Doctors certainly have a strong impression 
of their confidence in the diagnosis or treatment, but that impression 
must arise more from recognizing a typical situation or comparing the 
present case to their past experiences rather than from any formal 
computation of likelihoods. 

2. An experienced physician can be pushed, in his or her domain of ex
pertise, to give arbitrarily many complex potential explanations for a 
patient's condition. Especially in the teaching hospital environment with 
which we are most familiar, this serves the useful pedagogical purpose 
of discouraging pat answers from students. Because so many diagnostic 
possibilities appear to be available for the expert to consider, we suspect 
that the rapid generation and equally rapid modification or elimination 
of many explicit hypotheses playa significant role in his or her reason
Ing. 

These observations reinforce our beliefs that somewhat more careful 
approaches to diagnosis are needed, ones that apply the most successful 
available techniques to each component of the diagnostic process. Al
though probabilistic techniques will be best in some well-defined domains, 
they should not be applied arbitrarily to making other decisions where the 
development of precise categorical models could lead to significantly better 
performance. The development and aggregation of a number of different 
approaches, both categorical and probabilistic, into a coherent program 
that is well suited to its application area remains a fascinating and difficult 
challenge. 

When thinking about the effectiveness of a computerized medical con
sultant, it is essential to recognize the difference between impressive ex
pertlike and truly expert behavior. A vehement critic of early work in 
artificial intelligence accused the practitioners of this "black art" of trying 
to reach the moon by climbing the tallest tree at their disposal (Dreyfus, 
1972). We must be somewhat concerned that the initial successes of the 
current programs should not turn out to be merely the improved view 
from a lofty branch. 
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